Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T12:33:09.945Z Has data issue: false hasContentIssue false

Schottky Barrier Heights of A1/p-Sil-xGex

Published online by Cambridge University Press:  15 February 2011

R. L. Jiang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P. R. China
J. Li
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P. R. China
X. C. Zhou
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P. R. China
J. N. Liu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P. R. China
Y. D. Zheng
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P. R. China
Get access

Abstract

Electrical properties of Al/p-Sil-xGex Schottky contacts were investigated. The Sil-xGexstrained layers were grown by using Rapid Thermal Process/Very Low Pressure-Chemical Vapor Deposition. It was found that Schottky barrier height decreased with increasing Ge fraction. The decrement is in accordance with the decrement of the bandgap of the strained Sil-xGex. The Fermi level at the interface is pinned at about 0. 43eV below the conduction band. The influence of strain relaxation for SiGe alloy layers and the Si cap layers on the properties of Schottky contacts were also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liou, H.K., Wu, X., Gennser, U., Kesan, V. P., Iyer, S. S.. Tu, K.N., and Yang, E. S., Appl. Phys. Lett. 60, 577 (1992).Google Scholar
2. Thompson, R. D., Tu, K. N., Angillelo, J., Delage, S., and Iyer, S. S., J. Electrochem. Soc. 135, 316 (1988).Google Scholar
3. Thomas, O., d'Heurle, F.M., and , Delage, J. Mater, Res. 5, 1453 (1990).Google Scholar
4. Aubry, V., Meyer, F., Warren, P., and Dutartre, D., Appl. Phys. Lett. 63, 2520 (1993).Google Scholar
5. Zhong, Peixin, Zheng, Youdou, Appl. Phys. lett., 62(25), 3259 (1993).Google Scholar
6. Kanaya, H., Hasegawa, F., Yamaka, E., Moriyan, T., and Nakajima, M., Jpn. J. Appl. phys. 28, L544 (1989).Google Scholar
7. Xiao, X., Sturm, J. C., Parihar, S. R., Lyon, S. A., Meyerhofer, D., Palfrey, S., and Shalicross, F. V., IEEE Electron Device Lett. 14, 199 (1993).Google Scholar
8. Youdou, Z., Rong, Z., Ruolian, J., Liqun, H., Peixing, Z., Shuiyuan, M. Shidong, Y., Qi, L., and Duan, F. in Structural Properties of Ge, Si1−x/Si Strained Layer Superlattices Grown by RRH/VLP-CVD, edited by Anastassakis, E. M. and Joannopoulos, J. D. (Proceedings of 20th International conference on the physics of semiconductors, World Scientific Thessaioniki, Greece, 1990), Vol. 2, pp. 869.Google Scholar
9. Sze, S. M., Physics of Semiconductor Devices 2nd ed. (Wiley Publishers, New York, 1981), ch. 5.Google Scholar
10. People, R., IEEE J. Quantum Electron. QE-22,1696 (1986).Google Scholar
11. Abstreiter, G., Eberl, K., Friess, E., Wegscheider, W., and Zachal, R., J. Crystal Growth, 95, 431 (1989).Google Scholar
12. Dutartre, D., Bremond, G., Souifi, A., and Benyattou, T., Phys. Rev. B3, 44 (1991); D. Dutartre, P. Warren, I. Berbezier, and P. Perret, Thin Solid Films, 222, 52 (1992).Google Scholar