Skip to main content Accessibility help
×
Home

Schottky Barrier and Electronic States at Silicide-Silicon Interfaces

  • P. E. Schmid (a1), M. Liehr (a2), F. K. Legoues (a2) and P. S. Ho (a2)

Abstract

This paper reviews the recent studies on Schottky barrier and interface states at silicide-silicon interfaces, with emphasis placed on the results obtained from the epitaxial Ni suicides. A model based on interfacial defect states has been proposed to account for the overall chemical correlation between the barrier height and the metal electronegativity. Measurements on the barrier heights of type A, B and C epitaxial Ni suicides show that these three interfaces can be formed with high degrees of perfection to yield a barrier of 0.78 eV. Similar interfaces formed under less ideal conditions or with impurity incorporation decrease the barrier to 0.66 eV. The density and distribution of the interface states measured by a capacitance spectroscopy method correlate well with the structural perfection of the single and mixed-phase interfaces. A consistent picture seems to have emerged suggesting that the barrier height at silicide-Si interfaces is formed as a result of Fermi level pinning by interfacial defect states which are controlled primarily by the degree of perfection of the interface instead of the specific epitaxy.

Copyright

Footnotes

Hide All

Work supported in part by the Office of Naval Research.

Footnotes

References

Hide All
1. Ho, P. S., J. Vac. Sci. Technol. A1, 745 (1983).
2. Purteil, R. J., Hollinger, G., Rubloff, G. W., and Ho, P. S., J. Vac. Science Technol., A1, 566 (1983);
Purtell, R. J., Ho, P. S., Rubloff, G. W., and Schmid, P. E., Physica 117B, 834 (1983).
3. Schmid, P. E., Helvetica Physica Acta 58, 371 (1985).
4. Tung, R. T., Phys. Rev. Lett. 52, 461 (1984).
5. Liehr, M., Schmid, P. E., LeGoues, F. K., and Ho, P. S., Phys. Rev. Lett. 54, 2139 (1985).
6. Evans, H. L., Yang, E. S. and Ho, P. S., Appl. Phys. Lett., 46, 486 (1985).
7. Ho, P. S., Yang, E. S., Evans, H. L. and Wu, X., to appear in Phys. Rev. Lett., (1986).
8. Duke, C. B. and Mailhiot, C., J. Vac. Sci. Technol. B3, 1170 (1985).
9. Andrews, J. M. and Phillips, J. C., Phys. Rev. Lett. 35, 56 (1975).
10. Tung, R. J., Gibson, J. M., and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983).
11. Clabes, J., Liehr, M., LeGoues, F. K., and Wittmer, M., to be published.
12. Hauenstein, R. J., Schlesinger, T. E., McGill, T. C., Hunt, B. D., and Schowalter, L. J., Appl. Phys. Lett. 47, 853 (1985).
13. Liehr, M., Schmid, P. E., LeGoues, F. K., and Ho, P. S., J. Vac. Sci. Technol. B3, 1190 (1985).
14. Wu, X., Evans, H. L., Yang, E. S., Liehr, M., and Ho, P. S., J. Vac. Sci. Technol. B3, 1151 (1985).
15. Van Loenen, E. J., and Fisher, A. E. M. J., private communication.
16. Tung, R. T., Levi, A. F. J., Gibson, J. M., Ng, K. K., Kevan, S. D., Schwartz, G. P., Joy, D. C., and Chantre, A., paper presented in this MRS symposium.

Schottky Barrier and Electronic States at Silicide-Silicon Interfaces

  • P. E. Schmid (a1), M. Liehr (a2), F. K. Legoues (a2) and P. S. Ho (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed