Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-23T02:47:38.759Z Has data issue: false hasContentIssue false

Schottky Barrier and Electronic States at Silicide-Silicon Interfaces

Published online by Cambridge University Press:  26 February 2011

P. E. Schmid
Affiliation:
Ecole Polytechnique de Lausanne, CH-1015, Lausanne, Switzerland
M. Liehr
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
F. K. Legoues
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
P. S. Ho
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

This paper reviews the recent studies on Schottky barrier and interface states at silicide-silicon interfaces, with emphasis placed on the results obtained from the epitaxial Ni suicides. A model based on interfacial defect states has been proposed to account for the overall chemical correlation between the barrier height and the metal electronegativity. Measurements on the barrier heights of type A, B and C epitaxial Ni suicides show that these three interfaces can be formed with high degrees of perfection to yield a barrier of 0.78 eV. Similar interfaces formed under less ideal conditions or with impurity incorporation decrease the barrier to 0.66 eV. The density and distribution of the interface states measured by a capacitance spectroscopy method correlate well with the structural perfection of the single and mixed-phase interfaces. A consistent picture seems to have emerged suggesting that the barrier height at silicide-Si interfaces is formed as a result of Fermi level pinning by interfacial defect states which are controlled primarily by the degree of perfection of the interface instead of the specific epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Work supported in part by the Office of Naval Research.

References

REFERENCES

1. Ho, P. S., J. Vac. Sci. Technol. A1, 745 (1983).Google Scholar
2. Purteil, R. J., Hollinger, G., Rubloff, G. W., and Ho, P. S., J. Vac. Science Technol., A1, 566 (1983);Google Scholar
Purtell, R. J., Ho, P. S., Rubloff, G. W., and Schmid, P. E., Physica 117B, 834 (1983).Google Scholar
3. Schmid, P. E., Helvetica Physica Acta 58, 371 (1985).Google Scholar
4. Tung, R. T., Phys. Rev. Lett. 52, 461 (1984).Google Scholar
5. Liehr, M., Schmid, P. E., LeGoues, F. K., and Ho, P. S., Phys. Rev. Lett. 54, 2139 (1985).Google Scholar
6. Evans, H. L., Yang, E. S. and Ho, P. S., Appl. Phys. Lett., 46, 486 (1985).Google Scholar
7. Ho, P. S., Yang, E. S., Evans, H. L. and Wu, X., to appear in Phys. Rev. Lett., (1986).Google Scholar
8. Duke, C. B. and Mailhiot, C., J. Vac. Sci. Technol. B3, 1170 (1985).Google Scholar
9. Andrews, J. M. and Phillips, J. C., Phys. Rev. Lett. 35, 56 (1975).Google Scholar
10. Tung, R. J., Gibson, J. M., and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983).Google Scholar
11. Clabes, J., Liehr, M., LeGoues, F. K., and Wittmer, M., to be published.Google Scholar
12. Hauenstein, R. J., Schlesinger, T. E., McGill, T. C., Hunt, B. D., and Schowalter, L. J., Appl. Phys. Lett. 47, 853 (1985).Google Scholar
13. Liehr, M., Schmid, P. E., LeGoues, F. K., and Ho, P. S., J. Vac. Sci. Technol. B3, 1190 (1985).Google Scholar
14. Wu, X., Evans, H. L., Yang, E. S., Liehr, M., and Ho, P. S., J. Vac. Sci. Technol. B3, 1151 (1985).Google Scholar
15. Van Loenen, E. J., and Fisher, A. E. M. J., private communication.Google Scholar
16. Tung, R. T., Levi, A. F. J., Gibson, J. M., Ng, K. K., Kevan, S. D., Schwartz, G. P., Joy, D. C., and Chantre, A., paper presented in this MRS symposium.Google Scholar