Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T22:22:17.014Z Has data issue: false hasContentIssue false

Scanning tunneling microscopy observation of surface reconstruction of GaN on sapphire and 6H-SiC

Published online by Cambridge University Press:  10 February 2011

A. R. Smith
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
V. Ramachandran
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
R. M. Feenstra
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
D. W. Greve
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon University
J. Neugebauer
Affiliation:
Fritz-Haber Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D14195 Berlin, Germany
J. E. Northrup
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
M. Shin
Affiliation:
Department of Materials Science, Carnegie Mellon University
M. Skowronski
Affiliation:
Department of Materials Science, Carnegie Mellon University
Get access

Abstract

We report studies of the surface structure of MBE-grown GaN layers on sapphire (0001) and 6H-(0001) SiC substrates. A different set of reconstructions is observed for nitrogen-face and gallium-face layers. The gallium-face has so far only been grown on MOCVD GaN/ sapphire substrates, while the nitrogen-face has been obtained on SiC and bare sapphire substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wu, W. H. et al., Appl. Phys. Lett. 68, 1371 (1996).Google Scholar
2. Grandjean, N. et al., J. Cryst. Growth 178, 220 (1997).Google Scholar
3. Daudin, B. et al., Appl. Phys. Lett. 69, 2480 (1996).10.1063/1.117504Google Scholar
4. Ramachandran, V. et al., (submitted to J. Electron. Mater.)Google Scholar
5. Hallin, C. et al., Inst. Phys. Conf. Ser. 142, (IPO Publishing Ltd, 1996).Google Scholar
6. Chu, T. L. et al., J. Electrochem. Soc. 112, 955 (1965).Google Scholar
7. Kaplan, R. and Parrill, T. M., Surface Science 165, L45–L52 (1986).10.1016/0039-6028(86)90799-5Google Scholar
8. Smith, A. R. et al., Phys. Rev. Lett. 79, 3934 (1997).Google Scholar
9. Smith, A. R. et al., Proc. STM-97 Conference (to be published)Google Scholar
10. Hughes, W. C. et al., J. Vac. Sci. Technol. B 13, 1571 (1995)10.1116/1.588189Google Scholar
11. Iwata, K. et al., Jpn. J. Appl. Phys. 35, Part 2, L289 (1996).Google Scholar
12. Smith, A. R. et al. (submitted to J. Vac. Sci. Technol.)Google Scholar
13. Hu, C. and DeGraef, M. (unpublished measurements).Google Scholar
14. Ponce, F. A. et al., Appl. Phys. Lett. 67, 337 (1996).Google Scholar
15. Sasaki, T. and Matsuoka, T., J. Appl. Phys. 64, 4531 (1988].10.1063/1.341281Google Scholar