Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-05T22:54:34.143Z Has data issue: false hasContentIssue false

The Ruby Scale at Megabar Pressures

Published online by Cambridge University Press:  10 February 2011

Isaac F. Silvera*
Affiliation:
Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, silvera@physics.harvard.edu
Get access

Abstract

Diamond anvil cells revolutionized high pressure research because they provided easy to generate extremely high pressures with an optical window on the sample and an easy-to-use pressure gauge based on the shift with pressure of the ruby fluorescence spectrum. The ruby scale provides an accurate method of determining pressure distributions within samples. However, at pressures above 100 GPa measurement of the ruby fluorescence begins to become difficult due to weakening signals, interference from intense diamond fluorescence, and ultimately, strong absorption of the exciting laser by diamond itself. We shall discuss a number of methods which have been devised to extend the ruby pressure optical gauge to 500 GPa, including quasi-direct pumping of the ruby R-lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mao, H. K., Bell, P. M., Dunn, K. J., Chrenko, R. M., and De Vries, R. C., Rev. Sci. Instrum. 50, 1002 (1979).Google Scholar
2. Ruoff, A. L., Xia, H., and Xia, Q., Review of Scientific Instruments 63, 4342, (1992).Google Scholar
3. Weir, C.E., Lippincott, E. R., Valkenburg, A. V., and Bunting, E. N., J. Res. of the NBS-A 63, 55 (1959).Google Scholar
4. Forman, R. A., Piermarini, G. J., Barnett, J. D., and Block, S., Science 176, 284 (1972).Google Scholar
5. Bell, P. M., Xu, J. A., and Mao, H. K., Shock Waves in Condensed Matter, Gupta, Y. M., Editor. 1986, Plenum: New York. p. 125.Google Scholar
6. Mao, H. K., Xu, J., and Bell, P.M., J. Geophys. Res. 91, 4673 (1986).Google Scholar
7. Boppart, H., van Straaten, J., and Silvera, I. F., Phys. Rev. B 32, 1423 (1985).Google Scholar
8. Ruoff, A. L., Recent Trends in High Pressure Research. 1992, Oxford & IBH Pub. Co.: New Delhi, p. 798.Google Scholar
9. Eggert, J. H., Goettel, K. A., and Silvera, I. F., Appl. Phys. Lett. 53, 2489 (1988).Google Scholar
10. Eggert, J. H., Goettel, K. A., and Silvera, I. F., Phys. Rev. B 40, 5733 (1989).Google Scholar
11. Eggert, J. H., Moshary, F., Evans, W. J., Goettel, K. A., and Silvera, I. F., Phys. Rev. B 44, 7202 (1991).Google Scholar
12. Chen, N. H. and Silvera, I. F., Rev. Sci. Instrum. 67, 4275 (1996).Google Scholar
13. Liu, J. and Vohra, Y. K., J. Appl. Phys. 79, 7978 (1996).Google Scholar
14. Lacam, A. and Chateau, C., J. Appl. Phys. 66, 366 (1989).Google Scholar
15. Leger, J. M., Chateau, C., and Lacam, A., J. Appl. Phys. 68, 2351 (1990).Google Scholar