Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-02T00:08:55.819Z Has data issue: false hasContentIssue false

Room-temperature magnetoresistance of one-dimensional magnetite (Fe3O4) nanostructures

Published online by Cambridge University Press:  01 February 2011

Zuqin Liu
Affiliation:
Department of Electrical Engineering - Electrophysics University of Southern California Los Angeles, California 90089, U. S. A
Daihua Zhang
Affiliation:
Department of Electrical Engineering - Electrophysics University of Southern California Los Angeles, California 90089, U. S. A
Chongwu Zhou
Affiliation:
Department of Electrical Engineering - Electrophysics University of Southern California Los Angeles, California 90089, U. S. A
Get access

Abstract

In this paper, we present our recent studies on the synthesis and magnetoresistance of single crystalline Fe3O4 core-shell nanowires and nanotubes. Homogeneous Fe3O4 nanowires/tubes with controllable length, diameter and wall thickness were synthesized. The as-prepared material composition and stoichoimetry have been carefully examined and confirmed with a variety of characterization techniques including XRD, EDS, XPS, and TEM. Magnetoresistance under different temperatures was systemically studied. Up to 1.2% room temperature magnetoresistance was observed in the as synthesized nanowires/tubes under a magnetic field of B = 1.8 T.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, Z., Satpathy, S., Phys. Rev. B. 44, 13319 (1991).Google Scholar
2. Batlle, X., Cuadra, P. J., Zhang, Z. Z., Cardoso, S., Freitas, P. P., J. Magn. Magn. Mater. 261, L305 (2003).Google Scholar
3. Eerenstein, W., Palstra, T. T. M., Hibma, T., Celitto, S., Phys. Rev. B. 66, 221101 (2002).Google Scholar
4. Li, X. W., Gupta, A., Xiao, G., Gong, G. Q., J. Appl. Phys. 83, 7049 (1998).Google Scholar
5. Poddar, P.; Fried, T.; Markovich, G..; Phys. Rev. B. 2002, 65, 172405 Google Scholar
6. Coey, J. M. D.; Berkowitz, A. E.; Balcells, LI, Putris, F. F.; Parker, F. T. Appl. Phys. Lett. 1998, 72, 734 Google Scholar
7. Han, S., Li, C., Liu, Z., Lei, B., Zhang, D., Jin, W., Liu, X., Tang, T., Zhou, C., Nano Lett. 4, 1241 (2004).Google Scholar
8. Zhang, D., Liu, Z., Han, S., Li, C., Lei, B., Stewart, M. P., Tour, J. M., Zhou, C., Nano Lett. 4, 2151 (2004).Google Scholar
9. Lind, D. M., Berry, S. D., Chern, G., Mathias, H., Testardi, L. R., Phys. Rev. B. 45, 1838 (1992).Google Scholar
10. Fujii, T., de Groot, F. M. F., Sawatzky, G. A., Voogt, F. C., Hibma, T., Okada, K., Phys. Rev. B. 59, 3195 (1999).Google Scholar
11. Kim, W., Kawaguchi, K., Koshizaki, N., Sohma, M., Mastsumoto, T., J. Appl. Phys. 93, 8032 (2003).Google Scholar
12. Liu, H., Jiang, E. Y., Bai, H. L., Zheng, R. K., Zhang, X. X., J. Phys. D: Appl. Phys. 36, 2950 (2003).Google Scholar
13. Liu, H., Jiang, E. Y., Bai, H. L., Zheng, R. K., Wei, H. L., Zhang, X. X., Appl. Phys. Letts. 83, 3531 (2003).Google Scholar