Skip to main content Accessibility help

Room Temperature ZnO/Zn0.8Mg0.2O Resonant Tunneling Devices For Microwave Applications

  • Aravind Inumpudi (a1), Agis A. Iliadis (a1), Supab Choopun (a2), R. D. Vispute (a2) and T. Venkatesan (a2)...


A ZnO/Zn0.8Mg0.2O double barrier resonant tunneling device (DBRTD) is reported here for the first time. The structure consists of 6 nm ZnO quantum wells and 7 nm Zn0.8Mg0.2O barriers grown by pulsed laser deposition (PLD) on c-cut sapphire substrates. Negative differential resistance (NDR) peaks were obtained at room temperature. The structure is developed by using an indium-tin oxide (ITO) layer both as the back contact electrode and as an etch-stopping layer. The PLD growth quality, wet etching processing for developing the mesa structure, and the I-V characteristics of the device are reported.



Hide All
[1]. Su, Y., Chang, J., Lu, Y., Lin, C., Wu, K., Wu, Z., “Novel AlInSb/InGaAs double-barrier resonant tunneling diode with high peak-to-valley current ratio at room temperature”, IEEE Electron Device Lett., vol. 21, pp. 146147 (2000).
[2]. Cong, L., Albrecht, J. D., Nathan, M. I., and Ruden, P. P., “Piezoelectric effect in (001) and (111) oriented double-barrier resonant tunneling heterostructures under transverse and longitudinal stress”, J. Appl. Phys., 79, pp.7763 (1996).
[3]. Albrecht, J. D., Cong, L., Ruden, P. P., Nathan, M. I., and Smith, D. L., “resonant tunneling in (001) and (111) oriented III-V double-barrier devices”, J. Appl. Phys., 79, pp. 7770 (1996).
[4]. Fung, A. K., Albrecht, J. D., Nathan, M. I., Ruden, P. P., and Shtrikman, H.In plane uniaxial stress effects of AlGaAs/GaAs modulation doped heterostructures”, J. Appl. Phys., 84, pp. 3741 (1998).
[5]. Verghese, P. M., Clarke, D. R., “Piezoelectric contributions to the electrical behavior of ZnO varistors”, Jour. Of Appl. Phys., vol. 87, no. 9, pt. 1-3 p.4430–8, 2000.
[6]. Choopun, S., Vispute, R. D., Noch, W., Balsamo, A., Sharma, R. P., Venkatesan, T., Iliadis, A., and Look, D. C., “Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on Sapphire”, Appl. Phys. Lett., 75, pp. 3947 (1999).
[7]. Vispute, R. D., Talyansky, V., Trajanovic, Z., Choopun, S., Dawnes, M., Sharma, R. P., Venkatesan, T., Woods, M. C., Lareau, R. T., Jones, K. A., and Iliadis, A. A., “High quality crystalline ZnO buffer layers on Sapphire for pulsed laser deposition of nitrides”, Appl. Phys. Lett., 70, pp. 2735 (1997).
[8]. Makino, T., Chia, C. H., Tuan, N. T., Segawa, Y., Kavasaki, M., Ohmoto, A., Tamura, K., and Koimuma, H., “Exciton spectra of ZnO epitaxial layers on lattice-matched substrates”, Appl. Phys. Lett., 76, pp. 3549 (2000).
[9]. Sun, X. W., Wang, L. D., Kwok, H. S., “Improved ITO thin films with a thin ZnO buffer layer”, Thin Solid Films, 360, pp.75 (2000).
[10]. Chang, S., Hicks, D. B., Laugal, R.C. O., “Patterning of ZnO thin films”, Technical Digest. IEEE Solid-State Sensor and Actuator Workshop, p. xi + 212, 41–5, (1999).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed