Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-08T14:44:04.696Z Has data issue: false hasContentIssue false

Room Temperature Growth of Indium Oxide Films by Reactive Ion Beam Assisted Deposition

Published online by Cambridge University Press:  01 February 2011

Kai Wang
Affiliation:
k2wang@uwaterloo.ca, University of Waterloo, Electrical and Computer Engineering, 200 University Ave West, Waterloo, N2L 3G1, Canada, 1-519-888-4567 x. 33804
Yuriy Vygranenko
Affiliation:
yuriy@venus.uwaterloo.ca, University of Waterloo, Electrical and Computer Engineering, Waterloo, N2L 3G1, Canada
Arokia Nathan
Affiliation:
anatha@ee.ucl.ac.uk, University College London, London Centre for Nanotechnology, London, WC1H 1AH, United Kingdom
Get access

Abstract

Conducting and semiconducting indium oxide thin films have been grown at room temperature by oxygen ion beam assisted e-beam evaporation. We studied an influence of the deposition conditions on thin film properties including the crystal structure, resistivity, optical transmittance, stoichiometry, morphology, and intrinsic stress. X-ray diffraction analysis shows that the crystal structure of indium oxide films changes from amorphous to polycrystalline with preferred (222) orientation when the discharge current increases from 0.5 A to 2.0 A. Film resistivity is tailored in a wide range from 3E-4 ohm-cm to 2E9 ohm-cm by modifying both the evaporation rate of indium and the discharge current of the oxygen ion source. X-ray photoelectron spectroscopy data reveal that the highly-resistive films are more oxygen-enriched than the highly-conductive samples due to electrical activity of the oxygen vacancies. Morphological properties are evaluated using an optical profiler and a measured root-mean-square (RMS) roughness is ~1 nm for produced indium oxide films. All films being studied in this work have compressive stress ranging from 0.4 Gpa to 1.8 Gpa. They are highly transparent with a transmittance up to 90%.

Thus, high-performance indium oxide films can be engineered by the reactive ion beam assisted deposition to meet the requirements of different applications such as solar cells, photodetectors, OLEDs, transparent TFTs, and optical coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hartnegel, H. L., Dawar, A. L., Jain, A.K., Jagadish, C., Semiconducting Transparent Thin Films, Institute of Physics Publ., Bristol 1995.Google Scholar
2. Masuda, S., Kitamura, K., Okumura, Y. Miyatake, S., Tabata, H., and Kawai, T., J. Appl. Phys. 93, 1624 (2003).Google Scholar
3. Carcia, P. F., McLean, R. S., Reilly, M. H., and Nunes, G. Jr, Appl. Phys. Lett. 82, 1117 (2003).Google Scholar
4. Fortunato, E., Barquinha, P., Pimentel, A., Gonçalves, A., Marques, A., Martins, R., and Pereira, L., Appl. Phys. Lett. 85, 2541 (2004).Google Scholar
5. Presley, R., Munsee, C., Park, C-H, Hong, D., Wager, J. and Keszler, D., J. Phys.D: Appl. Phys. 37, 2810 (2004).Google Scholar
6. Chiang, H., Wager, J., Hoffman, R., Jeong, J. and Keszler, D., Appl. Phys. Lett. 86, 013503 (2005).Google Scholar
7. Dehuff, N., Kettenring, E., Hong, D., Chiang, H., Wager, J., Hoffman, R., Park, C.-H., and Keszler, D., J. Appl. Phys. 97, 064505 (2005).Google Scholar
8. Lavareda, G., Carvalho, C. Nunes de, Fortunato, E., Ramos, A., Alves, E., Conde, O., and Amaral, A., J. Non-Cryst. Solids 352, 2311 (2006).Google Scholar
9. Wang, L., Yoon, M., Lu, G., Yang, Y., Facchetti, A., and Marks, T. J., Nature 5, 893 (2006).Google Scholar
10. Vygranenko, Y., Wang, K., and Nathan, A., Appl. Phys. Lett. 86, 172105 (2006).Google Scholar
11. Yang, H., Li, Y., Norton, D. P., Pearton, S. J., Jung, S., Ren, F., and Boatner, L. A., Appl. Phys. Lett. 86, 172103 (2005).Google Scholar
12. Ohta, H., Mizoguchi, H., Hirano, M., Narushima, S., Kamiya, T., and Hosono, H., Appl. Phys. Lett. 82, 823 (2003).Google Scholar
13. Liu, C., Matsutani, T., Asanuma, T., Murai, K., Kiuchi, M., Alves, E., and Reis, M., J. Appl. Phys. 93, 2262 (2003).Google Scholar
14. Smidt, F. A., Int. Mater. Rev. 35, 61 (1990).Google Scholar
15. González-Elipe, A. R., Yubero, F., and Sanz, J. M., Low Energy Ion Assisted Film Growth, Imperial College Press, London 2003.Google Scholar
16. Carcia, P. F., McLean, R. S., Reilly, M. H., Li, Z. G., Pillione, J. J., and Messier, R. F., J. Vac. Sci. Technol. A 21, 745 (2003)Google Scholar