Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-08T03:31:47.934Z Has data issue: false hasContentIssue false

Room Temperature Ferromagnetism in Powder Form of Sn1-xCrxO2 (x = 0.01, 0.02, 0.03, 0.04 and 0.05) Solid Solution

Published online by Cambridge University Press:  31 January 2011

Kun Xu
Affiliation:
d082027@kaiyodai.ac.jp, Tokyo University of Marine Science and Technology, Tokyo, Japan
Mitsuru Izumi
Affiliation:
izumi@kaiyodai.ac.jp, Tokyo University of Marine Science and Technology, Tokyo, Japan
Osami Yanagisawa
Affiliation:
osami@yuge.ac.jp, Yuge National College of Maritime Technology, Yuge, Japan
Tetsuya Ida
Affiliation:
ida@hiroshima-cmt.ac.jp, Hiroshima National College of Maritime Technology, Hiroshima, Japan
Get access

Abstract

Structural and magnetic properties were investigated in the mixed powders of Sn1-xCrxO2 (x = 0.01, 0.02, 0.03, 0.04 and 0.05) in nominal composition. The lattice parameter observed in (110) x-ray diffraction indicates two step changes with increasing Cr content. The occupation of Cr ion at the interstitial position leads to elongation of the lattice parameter for x = 0.01 to x =0.03. Then, the Cr3+ ions are remarkably substituted into the Sn4+ ion site for x = 0.04 to x = 0.05, which results in shortening of the lattice. The lattice parameters for x = 0.01 and 0.02 are larger than x = 0.03 to 0.05. The room temperature ferromagnetism appeared in the sample with x = 0.01 and reaches maximum at the doping rate of x = 0.02; while the magnetization decreases for x > 0.02 was observed. Present study clearly shows the existence of correlation between appearance of ferromagnetism and the structural change.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H., Science 291, 854 (2001).10.1126/science.1056186Google Scholar
2 Wang, H. X., Yan, Y., Mohammed, Y. Sh., Du, X. B., Li, K., and Jin, H. M., J. Magn. Magn. Mater. 321, 337 (2009).10.1016/j.jmmm.2008.09.020Google Scholar
3 Misra, S. K., Andronenko, S. I., Reddy, K. M., Hays, J., and Punnoose, A., J. Appl. Phys. 99, 08M106 (2006).10.1063/1.2165146Google Scholar
4 Misra, S. K., Andronenko, S. I., Reddy, K. M., Hays, J., Thurber, A., and Punnoose, A., J. Appl. Phys. 101, 09H120 (2007).10.1063/1.2709752Google Scholar
5 Serrano, A., Pinel, E. Fernandes, Quesada, A., Lorite, I., Plaza, M., Perez, L., Jimenez-Villacorta, F., Venta, J. de la, Martin-Gonzalez, M. S., Costa-Kramer, J. L., Fernandez, J. F., Llopis, J., and Garcia, M. A., Phys. Rev. B 79, 144405 (2009).10.1103/PhysRevB.79.144405Google Scholar
6 Komen, C. Van, Thurber, A., Reddy, K. M., Hays, J., and Punnoose, A., J. Appl. Phys. 103, 07D141 (2008).10.1063/1.2836797Google Scholar
7 Thurber, A., Reddy, K. M., and Punnoose, A., J. Appl. Phys. 101, 09N506 (2007).10.1063/1.2709413Google Scholar
8 Coey, J. M. D., Douvalis, A. P., Fitzgerald, C. B., and Venkatesan, M., Appl. Phys. Lett. 84, 1332 (2004)10.1063/1.1650041Google Scholar