Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T15:38:17.607Z Has data issue: false hasContentIssue false

Room Temperature Electroluminescence From D1 Dislocation Centers In Silicon

Published online by Cambridge University Press:  15 February 2011

Einar Ö Sveinbjörnsson
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
Jörg Weber
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
Get access

Abstract

We report on electroluminescence at room temperature from forward biased n+-p silicon diodes containing high densities (108-109 cm−2) of dislocations at the junction interface. In addition to electroluminescence from band-to-band transitions, we observe a signal arising from the well known dislocation center Dl peaked at ∼1.6 μm (0.78 eV). The Dl electroluminescence intensity at room temperature increases linearly with current density with no observable saturation as long as sample heating is avoided. The quenching of the D l luminescence between 4 K and room temperature is highly sensitive to metal impurities which introduce competitive non-radiative recombination centers. The external power efficiency of the DI electroluminescence was estimated to be of the order of 10−6.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Pomrenke, G., Axmann, A., Eisele, E., Haydl, W. and Schneider, J., Appl. Phys. Lett. 46, 381 (1985).Google Scholar
2. Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 64, 2842 (1994).Google Scholar
3. Franzò, G., Priolo, F., Coffa, S., Polman, A., and Carnera, A., Appl. Phys. Lett. 64, 2235 (1994).Google Scholar
4. Coffa, S., Franzò, G. and Priolo, F., Appl. Phys. Lett. 69, 2077 (1996).Google Scholar
5. Stimmer, J., Reittinger, A., Nützel, J. F., Abstreiter, G., Holzbrecher, H., and Buchal, Ch., Appl. Phys. Lett. 68, 3290 (1996).Google Scholar
6. Presting, H., Zinke, T., Splett, A., Kibbel, H. and Jaros, M., Appl. Phys. Lett. 69, 2376 (1996).Google Scholar
7. Kveder, V. V., Steinman, E. A., Shevchenko, S. A., and Grimmeiss, H. G., Phys. Rev. B 51, 10520 (1994).Google Scholar
8. Sveinbjörnsson, E. Ö. and Weber, J., Appl. Phys. Lett. 69, 2686 (1996).Google Scholar
9. Staiger, W., Pfeiffer, G., Weronek, K., Höpner, A., and Weber, J., Mater. Sci. Forum 83–87, 1571 (1994).Google Scholar
10. Sauer, R., Weber, J., Stolz, J., Weber, E. R., Küsters, K.-H., and Alexander, H., Appl. Phys. A 36, 1 (1985).Google Scholar
11. Sveinbjörnsson, E. Ö. and Weber, J., in Thin Solid Films (Proceedings of the E-MRS 1996 meeting, Strasbourg, France) in press (1996).Google Scholar
12. Weber, J., Bauch, H., and Sauer, R., Phys. Rev. B 25, 7688 (1982).Google Scholar
13. Suezawa, M., Sasaki, Y., and Sumino, K., Phys. Stat. Solidi A 79, 173 (1983).Google Scholar
14. Michaelis, C. and Pilkuhn, M. H., Phys. Status Solidi 36, 311 (1969).Google Scholar
15. Ong, T. C., Terrill, K. W., Tam, S., and Hu, C., IEEE Electron Dev. Lett. EDL-4, 460 (1983).Google Scholar