Skip to main content Accessibility help
×
Home

Room Temperature Boron Diffusion in Amorphous Silicon

  • Jeannette M. Jacques (a1), Kevin S. Jones (a2), Mark E. Law (a3), Lance S. Robertson (a4), Leonard M. Rubin (a5) and Enrico Napolitani (a6)...

Abstract

As millisecond annealing is increasingly utilized, the as-implanted profile dominates the final dopant distribution. We characterized boron diffusion in amorphous silicon prior to post-implantation annealing. SIMS confirmed that both fluorine and germanium enhance boron motion in amorphous materials. The magnitude of boron diffusion in germanium amorphized silicon scales with increasing fluorine dose. Boron atoms are mobile at concentrations approaching 1x1019 atoms/cm^3. It appears that defects inherent to the structure of amorphous silicon can trap and immobilize boron atoms at room temperature, but that chemical reactions involving Si-F and Si-Ge eliminate potential trapping sites. Sequential Ge+, F+, and B+ implants result in 80% more boron motion than do sequential Si+, F+, and B+ implants. The mobile boron dose and trapping site concentration change as functions of the fluorine dose through power law relationships. As the fluorine dose increases, the trapping site population decreases and the mobile boron dose increases. This reduction in trap density can result in as-implanted “junction depths” that are as much as 75% deeper (taken at 1x1018 atoms/cm-3) for samples implanted with 500 eV, 1x1015 atoms/cm2 boron.

Copyright

References

Hide All
1 Baek, S., Jang, T., and Hwang, H., Appl. Phys. Lett. 80 (13), 2272 (2002)
2 Fortunato, G., Mariucci, L., Stanizzi, M., Privitera, V., Whelan, S., Spinella, C., Mannino, G., Italia, M., Bongiorno, C., and Mittiga, A., Nucl. Inst. Meth. Phys. Res. B 186, 401 (2002).
3 Gebel, T., Voelskow, M., Skorupa, W., Mannino, G., Privitera, V., Priolo, F., Napolitani, E., and Carnera, A., Nucl. Inst. Meth. Phys. Res. B 186, 287 (2002).
4 Tsukamoto, H., Solid-State Electron. 43, 487 (1999).
5 Juang, M.H., Wan, F.S., Liu, H.W., Cheng, K.L., and Cheng, H.C., J. Appl. Phys. 71 (7), 3628 (1992)
6 Juang, M.H. and Cheng, H.C., Appl. Phys. Lett. 60 (17), 2092 (1992)
7 Napolitani, E., Coati, A., Salvador, D. De, Carnera, A., Mirabella, S., Scalese, S., and Priolo, F., Appl. Phys. Lett. 79 (25), 4145 (2001)
8 Privitera, V., Spinella, C., Fortunato, G., and Mariucci, L., Appl. Phys. Lett. 77 (4), 552 (2000)
9 Jacques, J.M., Jones, K.S., Robertson, L.S., Li-Fatou, A., Hazelton, C.M., Napolitani, E., and Rubin, L.M., J. Appl. Phys. 98, 073521 (2005).
10 Jacques, J.M., Robertson, L.S., Law, M.E., Jones, K.S., Rendon, M.J., and Bennett, J., Mater. Res. Soc. Symp. Proc. 717, C4.6.1 (2002)
11 Napolitani, E., Salvador, D. De, Storti, R., Carnera, A., Mirabella, S., Priolo, F., Phys. Rev. Lett. 93, 055901 (2004).
12 Ziegler, J.F. and Biersack, J.P., The Stopping and Range of Ions in Matter (SRIM-2000.4) (IBM Co., Maryland, 1999).
13 Roorda, S., Ph.D. Thesis (1990) Relaxation and Crystallization of Amorphous Silicon. The Rijksuniversiteit, Utrecht, The Netherlands.
14 Roorda, S., Poate, J.M., Jacobson, D.C., Dennis, B.S., Dierker, S., and Sinke, W.C., Appl. Phys. Lett. 56 (21), 2097 (1990)
15 Roorda, S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Dierker, S., Dennis, B.S., Eaglesham, D.J., Spaepen, F., and Fuoss, P., Phys. Rev. B 44 (8), 3702 (1991)
16 Roorda, S., Nucl. Inst. & Meth. Phys. Res. B 148, 366 (1999).
17 Hobler, G., Simionescu, A., Palmetshofer, L., Tian, C., and Stingeder, G., J. Appl. Phys. 77, 3697 (1995).
18 Hobler, G. and Otto, G., Mater. Sci. Semicond. Process. 6, 1 (2003).
19 Ion Implantation Science and Technology, 2004 ed., edited by Ziegler, J. F. (Ion Implantation Technology Co., New York, 2004) pp. 58.
20 Spitzer, W.G., Huber, G.K., and Kennedy, T.A., Nucl. Inst. Meth. 209/210, 309 (1983)
21 Brodsky, M.H. and Kaplan, D., J. Non-Cryst. Solids 32, 431 (1979).
22 Kalpan, D., Sol, N., Velasco, G., and Thomas, P., Appl. Phys. Lett. 33, 440 (1978).
23 Dannefaer, S., Mascher, P., and Kerr, D., Phys. Rev. Lett. 56, 2195 (1986).
24 Collart, E.J.H., Weemers, K., Cowern, N.E.B., Politiek, J., Bancken, P.H.L., Berkum, J.G.M. van, and Gravesteijn, D.J., Nucl. Inst. Meth. Phys. Res. B 139, 98 (1998).
25 Cowern, N.E.B., Appl. Phys. Lett. 64 (20), 2646 (1994)

Keywords

Room Temperature Boron Diffusion in Amorphous Silicon

  • Jeannette M. Jacques (a1), Kevin S. Jones (a2), Mark E. Law (a3), Lance S. Robertson (a4), Leonard M. Rubin (a5) and Enrico Napolitani (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed