Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-19T08:24:33.277Z Has data issue: false hasContentIssue false

The Role of Surface Layers in Glass Leaching Performance

Published online by Cambridge University Press:  28 February 2011

J. K. Bates
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
W. L. Ebert
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
J. J. Mazer
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
J. P. Bradley
Affiliation:
McCrone Associates, Inc., 850 Pasquinelli Drive, Westmont, IL 60559
C. R. Bradley
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
N. L. Dietz
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
Get access

Abstract

The examination of reacted layers that form as glass reacts can provide insight into reaction mechanisms that control long-term glass reaction, and into processes by which radionuclides are released to solution. Examples are given for the natural glasses obsidian and tektite, and the nuclear waste glasses 131 and 165, where the layers form both in-situ and precipitated from solution, where they are both amorphous and crystal 1ine, where selective incorporation of actinide elements Into stable phases may offer a barrier to release, and where sloughing of the layers from the glass acts as an alternative radionuclide release process to solubility-limited control.Several reaction processes occur simultaneously as glass reacts, and the projection of glass performance to long time periods requires the identification of those processes that dominate the long-term reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bourcier, W. L., Peiffer, D. W, Knauss, K. G., McKeegan, K. D., and Smith, D. K., Mat. Res. Soc. Symp. Proc. 176, 209 (1990).Google Scholar
2. Grambow, B., Nuclear Waste Glass Dissolution: Mechanisms, Model, and Application, JSS Project Report 87-02, 102 p. (1987).Google Scholar
3. Apted, M. J. and Engel, D. W., High Level Radioactive Waste Mgmt. 1, Proc. of the Internat. Top. Mtg., American Nuclear Society, p. 388 (1990).Google Scholar
4. Friedman, I. and Smith, R. L., Amer. Antiq. 25, 476 (1960).Google Scholar
5. Ericson, J. E., Mat. Res. Soc. Symp. Proc. 125, 345 (1988).Google Scholar
6. Laursen, T. and Lanford, W. A., Nature 276, 153 (1978).Google Scholar
7. Friedman, I. and Long, W., J. Non-Cryst. Sol. 67, 127 (1984).Google Scholar
8. Bates, J. K., Abrajano, T. A., Ebert, W. L., Mazer, J. J., and Gerding, T. J., Mat. Res. Soc. Symp. Proc. 125, 387 (1988).CrossRefGoogle Scholar
9. Stevenson, C. M., Carpenter, J., and Scheetz, B. E., Archaeometry 31, 193 (1989).Google Scholar
10. Yang, W. A. and Kirkpatrick, R. J.. Am. Mineral. 75, 1009 (1990).Google Scholar
11. Karkhanls, S. N., Bancroft, G. M., Fyfe, W. S., and Brown, J. D., Nature 284, 435 (1980).Google Scholar
12. Ewing, R. C., Mat. Res. Soc. Symp. Proc. 1, 57 (1978).Google Scholar
13. Berger, R. and Ericson, J., Recent Advances in Science and Technology of Materials, Vol. 3, Plenum Press, New York, 187 (1978).Google Scholar
14. Barkatt, A., Boulos, M., Barkatt, A., Sousanpour, W., Boroomand, M., and Macedo, P., Geochim. Cosmochim. Acta 48, 361 (1984).Google Scholar
15. Stevenson, C. M., Freeborn, W., and Scheetz, B. E., Archaeometry 29, 120 (1987).Google Scholar
16. Mazer, J. J., Argonne National Laboratory, personal communication (1990).Google Scholar
17. Abrajano, T. A. Jr., Bates, J. K., Woodland, A. B., Bradley, J. P., and Bourcier, W. L., Clays and Clay Miner. 38, 537 (1990).Google Scholar
18. Bradley, J. P. and Bates, J. K., Proc. XIIth Internat. Cong. Elect. Microscopy, 444 (1990).Google Scholar
19. Wicks, G. G., Stone, J. A., Chandler, G. T., and Williams, S., Long-Term Leaching Behavior of Simulated SRP Waste Glass, Savannah River Laboratory report DP-1728, 37 p. (1986).Google Scholar
20. Cunnane, J. C. and Bates, J. K., this volume (1991).Google Scholar
21. Bradley, J. P., McCrone Associates, Inc., personal communication (1991).Google Scholar
22. Bradley, J. P. and Bates, J. K., Microbeam Analysis 1990 (in press).Google Scholar
23. Bates, J. K., Ebert, W. L., Bradley, J. P., and Bourcier, W. L., High-Level Radioactive Waste Mgmt. 3, American Nuclear Society (in press).Google Scholar
24. Bates, J. K. and Gerding, T. J., Application of the NNWSI Unsaturated Test Method to Actinide Doped SRL 165 Type Glass, Argonne National Laboratory report ANL-89/24 (1990).Google Scholar
25. Ebert, W. L., Bates, J. K., and Gerding, T. J., The Reaction of Glass during Gamma Irradiation in a Saturated Tuff Environment. Part 4; SRL 165, ATM-lc, and ATM-8 Glasses at 1E3 R/h and 0 R/h. Argonne National Laboratory report ANL-90/13 (1990).Google Scholar