Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T23:52:41.746Z Has data issue: false hasContentIssue false

The Role of Sputter Pressure in Influencing Electrical and Optical Properties of ITO on Glass

Published online by Cambridge University Press:  01 February 2011

Shereen Elhalawaty
Affiliation:
selhalaw@asu.edu, Arizona State University, School of Materials, Tempe, Arizona, United States
Karthik Sivaramakrishnan
Affiliation:
s.karthik@asu.edu, Arizona State University, Tempe, Arizona, United States
Theodore David
Affiliation:
David.Theodore@freescale.com, Freescale Semiconductor Inc, Tempe, Arizona, United States
Terry L Alford
Affiliation:
TA@asu.edu, Arizona State University, 1711 S Rural Rd, ERC 252, Tempe, 85281, United States
Get access

Abstract

Thin layers of indium tin oxide (ITO) were deposited onto glass substrates by RF magnetron sputtering with the pressure varying from 6 mTorr to 15 mTorr. The films were annealed in a reducing atmosphere at 500 °C for 30 minutes. Sheet resistance was determined by four-point-probe measurement. Resistivity, mobility, and carrier concentration were obtained by Hall effect measurements. Transmission of the films in the visible spectrum was determined by photospectrometry. The structure of the films was characterized by X-ray diffraction. X-ray photoelectron spectroscopy was used to determine the oxidation state of Sn, which was used to determine the fraction of active tin clusters. The effect of additional anneals was investigated. The results reveal that the lowest resistivity obtained was 1.69×10-4 -cm at 9 mTorr and the highest transmittance of 90% was obtained after a second anneal. However, the second anneal decreased the mobility and conductivity for high sputter pressures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kim, H. Gilmore, C. M. Pique, A. Horwitz, J. S. Mattoussi, H. Murata, H. Kafafi, Z. H. and Chrisey, D. B. J. Appl. Phys. 86, 6451 (1999).10.1063/1.371708Google Scholar
2 Fan, J. C. C. and Goodenough, J. B. J. Appl. Phys. 48, 3524 (1977).Google Scholar
3 Tahar, R. B. Ban, T. Ohya, Y. and Takahashi, Y. J. Appl. Phys. 83, 2631 (1998).Google Scholar
4 Chopra, K. L. Major, S. and Pandya, D. K. Thin Solid Films 102, 1 (1983).Google Scholar
5 Danson, N. Safi, I. Hall, G. W. Howson, R. P. Surf. Coat. Technol. 99, 147 (1998).10.1016/S0257-8972(97)00436-2Google Scholar
6 Yamaguchi, M. Ektessabi, A. Nomura, H. Yasui, N. Thin Solid Films 447, 115 (2004).10.1016/j.tsf.2003.09.033Google Scholar
7 Kim, D. Kim, S. Surf. Coat. Technol. 154, 204 (2002).Google Scholar
8 Kim, D. Kim, S. Surf. Coat. Technol. 157, 66 (2003).Google Scholar
9 Kim, H. Pique, A. Horwitz, J. S. Mattoussi, H. Murata, H. Kafafi, Z. H. and Chrisey, D. B. J. Appl. Phys. Lett. 74, 3444 (1999).Google Scholar
10 Zheng, J. P. and Kwok, H. S. Appl. Phys. Lett. 639, 1 (1993).Google Scholar
11 Betz, U. Olsson, M. K. Marthy, J. Escola, M. F. Atamny, F. Surf. Coat. Technol. 200, 5751 (2006).10.1016/j.surfcoat.2005.08.144Google Scholar
12 Doolittle, L. R. Nucl. Instrum. Methods Phys. Res. B 9, 344 (1985).Google Scholar
13 Han, H. Mayer, J. W. and Alford, T. L. J. Appl. Phys. 99, 123711 (2006).10.1063/1.2204815Google Scholar
14 Hartnagel, H. L. Dawar, A. L. Jain, A. K. and Jagadish, C. Semiconducting Transparent Thin Films (Institute of Physics, Philadelphia, 1995).Google Scholar
15 Noguchi, S. and Sakata, H. J. Phys. D 13, 1129 (1980).Google Scholar
16 Han, H. Mayer, J. W. and Alford, T. L. J. Appl. Phys. 98, 083705 (2005).10.1063/1.2106013Google Scholar
17 Han, H. Zoo, Y. Bhagat, S. K. Lewis, J. S. and Alford, T. L. J. Appl. Phys. 102, 063710 (2007).10.1063/1.2783952Google Scholar
18 Moulder, J. F., Stickle, W. F. and Sobol, P. E. Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics, Minnesota, 1995).Google Scholar
19 , Frank and Köstlin, H., Appl. Phys. A: Solids Surf. 27, 197 (1982).Google Scholar
20 Yamomoto, S. Yamanaka, T. and Ueda, Z. J. Vac. Sci. Technol. A 5, 1952 (1987).Google Scholar
21 Han, H. Mayer, J. W. and Alford, T. L. J. Appl. Phys. 100, 083715 (2006).Google Scholar
22 Kim, H. Horwitz, J. S. Kushto, G. Pique, A. Kafafi, Z. H. Gilmore, C. M. and Chrisey, B. D. J. Appl. Phys. 88, 6021 (1998).Google Scholar