Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T03:47:46.150Z Has data issue: false hasContentIssue false

The Role of Rare Earths in Narrow Energy Gap Semiconductors

Published online by Cambridge University Press:  25 February 2011

D.L. Partin
Affiliation:
Physics Dept., General Motors Research Laboratories, Warren, MI 48090-9055
J. Heremans
Affiliation:
Physics Dept., General Motors Research Laboratories, Warren, MI 48090-9055
D.T. Morelli
Affiliation:
Physics Dept., General Motors Research Laboratories, Warren, MI 48090-9055
C.M. Thrush
Affiliation:
Physics Dept., General Motors Research Laboratories, Warren, MI 48090-9055
Get access

Abstract

Narrow energy band gap semiconductors are potentially useful for various devices, including infrared detectors and diode lasers. Rare earth elements have been introduced into lead chalcogenide semiconductors using the molecular beam epitaxy growth process. Europium and ytterbium increase the energy band gap, and nearly lattice-matched heterojunctions have been grown. In some cases, valence changes in the rare earth element cause doping of the alloy. Some initial investigations of the addition of europium to indium antimonide will also be reported, including the variation of lattice parameter and optical transmission with composition and a negative magnetoresistance effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Partin, D.L., IEEE J. Quantum Elec. 24, 1716 (1988).CrossRefGoogle Scholar
2. Tacke, M., Spanger, B., Lambrecht, A., Norton, P.R., and Bottner, H., Appl. Phys. Lett ………Google Scholar
3. Munekata, H., Ohno, H., Molnar, S. von, Segmuller, A., Chang, L.L., and Esaki, L., Phys. Rev. Lett. 63, 1849 (1989).Google Scholar
4. Holloway, H. and Walpole, J.N., Prog. Cryst. Growth, Charac. 2, 49 (1979).Google Scholar
5. Preier, H., Appl. Phys. 20, 189 (1979).Google Scholar
6. Partin, D.L. J. Appl. Phys. 57, 1997 (1985).Google Scholar
7. Bacskay, G.B., Fensham, P.J. and Ritchie, I.M., J. Phys. Chem. Solids 29, 1213 (1968).Google Scholar
8. Alekseeva, G.T., Vinogradova, M.N., Gartsman, K.G., Zyuzin, A. Yu., Mailina, Kh. R., Prokofeva, L.V., and Stilbans, L.S., Soy. Phys. Solid State 27, 1953 (1985).Google Scholar
9. Suryanarayanan, R., Guntherodt, G., Freeouf, J.L., and Holtzberg, F., Phys. Rev. B 12, 4215 (1975).CrossRefGoogle Scholar
10. Suryanarayanan, R., Paparoditis, C., Ferre, J. and Briat, B., J. Appl. Phys. 43, 4105 (1972).Google Scholar
11. Partin, D.L., J. Elec. Mater. 13, 493 (1984).Google Scholar
12. Feit, Z., Kostyk, D., Woods, R.J., Mak, P., to be publ., Appl. Phys. Lett.Google Scholar
13. Ishida, A., Maramatsu, K., Takashiba, H., and Fujiyasu, H., Appl. Phys. Lett. 55, 430 (1989).Google Scholar
14. Partin, D.L., J. Electron. Mater. 12, 917 (1983).Google Scholar
15. Williams, D. and Wessels, B., Appl. Phys. Lett. 56, 566 (1990).Google Scholar
16. Taylor, J.B., Calvert, L.D., Utsunomiya, T., Wang, Yu and Despault, J.G., J. Less Common Metals 57, 39 (1978).Google Scholar
17. Hulliger, F. and Schmelczer, R., J. Solid State Chem. 26, 399 (1978).Google Scholar
18. Viksman, G.S., Gordienko, S.P. and Fenochka, B.V., Russia. Phys. Chem. 53, 290 (1979).Google Scholar
19. Partin, D.L., Heremans, J., Morelli, D.T. and Thrush, C.M., to be publ.Google Scholar
20. Oh, J.E., Bhattacharya, P.K., Chen, Y.C., and Tsukamoto, S., J. Appl. Phys. 66, 3618 (1989).Google Scholar
21. Partin, D.L., Thrush, C.M., Heremans, J., Morelli, D.T., and Olk, C.H., J. Vac. Sci. Technol. B 7, 348 (1989).Google Scholar
22. Morelli, D.T., Partin, D.L. and Heremans, J., Semicond. Sci. Technol. 5, S257 (1990).Google Scholar
23. Partin, D.L., Heremans, J., Morelli, D.T., Thrush, C.M., Olk, C.H., and Perry, T.A., Phys. Rev. B, 38, 3818 (1988).Google Scholar