Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T10:43:00.456Z Has data issue: false hasContentIssue false

Role of Interstitial and Interstitial-Impurity Interaction on Irradiation-Induced Segregation in Austenitic Steels

Published online by Cambridge University Press:  10 February 2011

M. Nastar
Affiliation:
CEA-Saclay, DECM/SRMP, 91191 Gif sur Yvette, France
P. Bellon
Affiliation:
Illinois Univ., Dept of Materials Science and Engineering, Urbana, IL
G. Martin
Affiliation:
CEA-Saclay, DECM/SRMP, 91191 Gif sur Yvette, France
J. Ruste
Affiliation:
EDF, DER/EMA, Moret-sur-Loing, France
Get access

Abstract

Segregation under irradiation in austenitic steels is due to a permanent flux of vacancies and interstitials produced by irradiation towards sinks like surfaces and interfaces. A model based on a mean field lattice rate theory is proposed where kinetics and thermodynamics are treated in a mutually consistent way. For a Fe-Ni-Cr ternary alloy, the 15 parameters defining the jump frequencies of vacancies were fitted on equilibrium properties including ordering energies and tracer diffusion experiments with no use of segregation data. Measurements of RIS by Auger Electron Spectroscopy (AES) were used in the last step of the fitting procedure in order to choose the best set of the 27 interstitial jump frequencies. This fitting procedure strongly supports the idea that the interstitials are contributing to RIS in Fe-Cr-Ni alloys. We also simulate the trapping of interstitials by an impurity model and reproduce the total inhibition of RIS by this impurity as observed experimentally [1].

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kato, T., Takahashi, H., and Izumiya, M., J. Nucl. Mater., 189, 167 (1992).Google Scholar
2. Andersen, P. L., Ford, F. P., Murphy, S. M., and Perks, J. M., in 4th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactor, Jekyll Island, GA, August 1989, NACE, 1990, p. 1.Google Scholar
3. Perks, J. M., Marwick, A. D., and English, C. A., AERE R 12121 June 1986.Google Scholar
4. Grandjean, Y., Bellon, P., and Martin, G., Phys. Rev. B 50, 4228 (1994).Google Scholar
5. Allen, T. R., Was, G. S., submitted to Effects of Radiation on Materials: 18th International Symposium, ASTM STP 1325, Nanstad, R. K. Ed., American Society for Testing and Materials, 1997.Google Scholar
6. Benkaddour, A., Dimitrov, C., and Dimitrov, O., J. Nucl. Mater., 217, 118 (1994).Google Scholar
7. Bellon, P., Nastar, M., and Ruste, J., to be published.Google Scholar
8. Kittel, C., “Introduction to solid state physics.”, 5th ed. (Wiley, New York, 1976).Google Scholar
9. Chakrabarti, D. J., Laughlin, D. E., Chen, S. W., and Chang, Y. A., in binary Alloys Phase diagrams Vol.2, 2nd Edition, T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak eds., ASM International, (XX), 1442.Google Scholar
10. Landolt-Börnstein, , in Atomic defects in Metals, edited by Ullmain, E., New Series, Group 3, vol. 25 (Springer Verlag, 1990).Google Scholar
11. de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., in Cohesion in Metals vol. I, Eds. Boer, F. R. de and Pettifor, D. G. (North-Holland, Amsterdam, 1988) 676.Google Scholar
12. Martin, G., Phys. Rev. B 41, 2279 (1990).Google Scholar
13. Landolt-Börnstein, , in Diffusion in Solid Metals and Alloys edited by Mehrer, H., New Series, Group 3, Vol.26 (Springer Verlag, 1990)Google Scholar
14. Bocquet, J. L., Lucasson, P., et Maury, F., Ann. Chim. Fr. 9, 81 (1984).Google Scholar
15. Murphy, S. M., J. Nucl. Mater., 182, 73 (1991).Google Scholar
16. Lam, N. Q., J. Nucl. Mater., 117, 106 (1983).Google Scholar
17. Carter, R. D., Damcott, D. L., Atzmon, M., Was, G. S., Bruemmer, S. M., and Kenik, E. A., J. Nucl. Mater. 211, 70 (1994).Google Scholar
18. Damcott, D. L., Allen, T. R., and Was, G. S., J. Nucl. Mater., 225, 97 (1995).Google Scholar
19. Was, G. S. and Allen, T., J. Nucl. Mater., 205, 332 (1993).Google Scholar