Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T20:17:42.047Z Has data issue: false hasContentIssue false

Role of Hydrogenated Surface in the Photoluminescence of Porous Silicon

Published online by Cambridge University Press:  28 February 2011

Masahiko Hirao
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350–03, Japan
Tsuyoshi Uda
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350–03, Japan
Yoshimasa Murayama
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350–03, Japan
Get access

Abstract

Optical properties of hydrogenated silicon clusters are investigated by density functional pseudopotential calculation. Transitions between the band-edge orbitals are allowed, in contrast to the indirect gap in bulk silicon. The energy gaps of hydrogenated silicon particles of 15 to 30 Å in diameter are estimated to be 2.0 to 1.5 eV. When the cluster is dehydrogenated, localized states related to dangling bonds appear in the mid-gap, which decrease the photoluminescence intensity. These results agree with much experimental evidence and suggest that the photoluminescence of porous silicon is attributable to hydrogenated silicon particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A. and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
3. Cullis, A. G. and Canham, L. T., Nature 353, 335 (1991).Google Scholar
4. Nakagawa, K., Nishida, A., Shimada, T., Yamaguchi, H. and Eguchi, K., Jpn. J. Appl. Phys. 31, L515 (1992).Google Scholar
5. Xie, Y. H., Wilson, W. L., Ross, F. M., Mucha, J. A., Fitzgerald, E. A., Macaulay, J. M. and Harris, T. D., J. Appl. Phys. 71, 2403 (1992).Google Scholar
6. Nishida, A., Nakagawa, K., Kakibayashi, H. and Shimada, T., Jpn. J. Appl. Phys. 31, L1219 (1992).Google Scholar
7. Tsang, J. C., Fischler, M. A. and Collins, R. T., Appl. Phys. Lett. 60, 2279 (1992).Google Scholar
8. Tsai, C., Li, K.-D., Kinosky, D. S., Qian, R.-Z., Hsu, T.-C., Irby, J. T., Banerjee, S. K., Tasch, A. F., Campbell, J. C., Hance, B. K. and White, J. M., Appl. Phys. Lett. 60, 1700 (1992).Google Scholar
9. Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R., Friedersdorf, L. E. and Searson, P. C., Phys. Rev. B 45, 13788 (1992).Google Scholar
10. Vial, J. C., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F. and Romestain, R., Phys. Rev. B 45, 14171 (1992).Google Scholar
11. Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J. and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
12. Deák, P., Rosenbauer, M., Stutzmann, M., Weber, J. and Brandt, M. S., Phys. Rev. Lett. 69, 2531 (1992).Google Scholar
13. Ren, S. Y. and Dow, J. D., Phys. Rev. B 45, 6492 (1992).Google Scholar
14. Proot, J. P., Delerue, C. and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).Google Scholar
15. Sanders, G. D. and Chang, Y.-C., Phys. Rev. B 45, 9202 (1992).Google Scholar
16. Buda, F., Kohanoff, J. and Parrinello, M., Phys. Rev. Lett. 69, 1272 (1992).Google Scholar
17. Read, A. J., Needs, R. J., Nash, K. J., Canham, L. T., Calcott, P. D. J. and Qteish, A., Phys. Rev. Lett. 69, 1232 (1992).Google Scholar
18. Ohno, T., Shiraishi, K. and Ogawa, T., Phys. Rev. Lett. 69, 2400 (1992).Google Scholar
19. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
20. Ihara, S., Ho, S. L., Uda, T. and Hirao, M., Phys. Rev. Lett. 65, 1909 (1990).Google Scholar
21. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F. and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar