Skip to main content Accessibility help
×
Home

The Role of Hydrogen in Laser Deposition of Diamond-Like Carbon

  • D. Thebert-Peeler (a1), P. T. Murray (a2), L. Petry (a2) and T. W. Haas (a3)

Abstract

Thin films have been grown on Si (100) substrates by pulsed laser evaporation of graphite using both IR and UV radiation. The character of the resulting film is found to be independent of the presence of H°. Diamond-like films are found to be a result of low (RT) temperature deposition of the higher energy incident particles of the UV (versus IR) laser ablation process.

Copyright

References

Hide All
[1] Deutchman, A.H. and Partyka, R.J., Advanced Materials and Processes 22 (1989).
[2] Cuomo, J.J., Pappas, D.L., Doyle, J.P., Bruley, J., and Saenger, K.L., to be published in the Proceedings of TMS 1991.
[3] Cuomo, J.J., Pappas, D.L., Bruley, J., Doyle, J.P., and Saenger, K.L., submitted to the Journal of Applied Physics (1/91).
[4] Cuomo, J.J., Bruley, J., Doyle, J.P., Pappas, D.L., Saenger, K.L., Liu, J.C., and Batson, P.E., submitted to the Journal of Materials Research 1991.
[5] Demers, R.T. and Harris, D.G., SPIE Vol 1146, Diamond Optics II, (1989) p. 48.
[6] Krishnaswamy, J., Rengan, A., Srivatsa, A., Narayan, J., Cong, Y., Collins, R., and Vedam, K., Mat. Res. Soc. Symp. Proc, Vol 129, (1989), p. 219.
[7] Krishnaswamy, J., Rengan, A., and Narayan, J., Mat. Res. Soc. Symp. Proc, Vol 129, (1989) p. 106.
[8] Sato, T., Furuno, S., Iguchi, S., and Hanabusa, M., Jpn. J. Appl. Phys. 26, (1987).
[9] Rengan, A., Srivatsa, A.R., Krishnaswamy, J., Narayan, J., Mat. Res, Soc. Symp., Vol 129, (1989) p. 456.
[10] Krishnaswamy, J., Rengan, A., Narayan, J., Vedam, K., and McHargue, C.J., Appl. Phys. Lett. 54, 2455 (1989).
[11] Danvaloo, F., Juengerman, E.M., Jander, D.R., Lee, T.J. and Collins, C.B., J. Appl. Phys. 67, 2081 (1990).
[12] Martin, J.A., Vazquez, L., Bernard, P., Comin, F. and Ferrer, S., Appl. Phys. Lett. 57 (1990).
[13] Collins, C.B., Danvaloo, F., Juengerman, E.M., Jander, D.R., and Lee, T.J., SPIE Vol 1146, Diamond Optics II, (1989) p. 37.
[14] Pivin, J.C., Spirckel, M., Allouard, M., and Rautureau, G., Appl. Phys. Lett., 57, 2657 (1990).
[15] Collins, C.B., Danvaloo, F., Juengerman, E.M., Osborn, W.R., and Jander, D.R., Appl. Phys. Lett. 54, 316 (1989).
[16] Wagal, S.S., Juengerman, E.M., and Collins, C.B., Appl. Phys. Lett. 53, 187 (1988).
[17] Fujimori, S., Kasai, T. and Inamura, T., Thin Solid Films 92, 71 (1982).
[18] Dejaguin, B.V. and Fedoseev, D.V., Growth of Diamond and Graphite from the Gas Phase (in Russian), Nanka, Moscow (1977).
[19] Badzian, A.R., Somonion, B., Badzian, T., Messier, R., Spear, K. and Roy, R., Proc. Of SPIE Conf. 683: 127 (1986).
[20] Badzian, A.R. and Devries, R.C., Crystallization of Diamond from the Gas Phase: Part 1, Mat. Res. Bull., Vol. 23, pp. 385–400, (1988).
[21] Frenklach, M. and Wang, Hai, APS, Vol 43, 1545 (1991).

Related content

Powered by UNSILO

The Role of Hydrogen in Laser Deposition of Diamond-Like Carbon

  • D. Thebert-Peeler (a1), P. T. Murray (a2), L. Petry (a2) and T. W. Haas (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.