Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T01:55:05.041Z Has data issue: false hasContentIssue false

The Role of Fibrinogen in Platelet Interaction with Methacrylate Polymers

Published online by Cambridge University Press:  26 February 2011

Jack N. Lindon
Affiliation:
Beth Israel Hospital and Harvard Medical School, Boston, MA
Eiichi Shiba
Affiliation:
Beth Israel Hospital and Harvard Medical School, Boston, MA
Leslie Kushner
Affiliation:
Beth Israel Hospital and Harvard Medical School, Boston, MA
Edwin W. Salzman
Affiliation:
Beth Israel Hospital and Harvard Medical School, Boston, MA
Get access

Abstract

When blood comes in contact with a foreign surface, protein adsorption occurs within seconds and precedes the arrival of blood cells. Since a layer of plasma proteins is laid down on any surface in contact with blood before the platelets arrive, differences in platelet reactivity with different surfaces must result from variations in the nature of the protein-surface interactions. These interactions may vary in terms of which proteins bind to the surfaces, the amounts bound, and the various changes in protein conformation induced by surface contact.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Packham, M.A., Evans, G., Glynn, M.F. and Mustard, J.F., J. Lab. Clin. Med. 73, 686 (1969).Google Scholar
2. Zucker, M.B. and Vroman, L., Soc. Exptl. Bio. Med. 131, 318 (1969).Google Scholar
3. Young, B.R., Lambrecht, L.K., Mosher, D.F. and Cooper, S.L., Adv. Chem. Ser. 199, 312 (1982).Google Scholar
4. Brash, J.L. and Uniyal, S., Polymer Sci. 66, 377 (1979).Google Scholar
5. Nyilas, E. E and Chiu, T.H., Art. Organs 2(Suppl), 56 (1978).Google Scholar
6. Lindon, J.N., Rodvien, R., Brier, D., Greenberg, R., Merrill, E. and Salzman, E.W., J. Lab. Clin. Med. 92, 904 (1978).Google Scholar
7. Brier-Russell, D., Salzman, E.W., Lindon, J., Handin, R., Merrill, E.W., Dincer, A.K. and Wu, J.S., J. Coll. Interface Sci. 81, 311 (1981).Google Scholar
8. Knight, L.C., Budzynski, A.Z. and Olexa, S.A, Thromb. Haemostas. 46, 593 (1981).Google Scholar
9. Wang, T., Ph.D. Thesis, Dept. of Biology, Mass. Inst. of Tech. (1977).Google Scholar
10. Lindon, J.N., McManama, G., Kushner, L., Merrill, E.W. and Salzman, E.W., Blood 68, 355 (1986).Google Scholar
11. Horbett, T.A. and Hoffman, A.S. in Applied Chemistry at Protein Interfaces, edited by Baier, R.E. (Am. Chemical Society, Washington DC, 1975) p. 230.CrossRefGoogle Scholar
12. Brash, J.L. and ten Hove, P., Thromb. Haemostas. 51, 326 (1984).Google Scholar
13. Vroman, L., Adams, A.L., Fischer, G.C. and PC, Munoz, Blood 55, 156 (1980).Google Scholar
14. Cross, M.J., Thromb. Diath. Haemorrh. 12, 524 (1964).Google Scholar
15. Schmitt, A., Varoqui, R., Uniyal, S., Brash, J.L. and Pusiner, C., J. Coll. Interface Sci. 92, 25 (1983).Google Scholar
16. Jacobs, S. and Cuatrecasas, P., Trends Biochem. Sci., p. 289 (September, 1977).Google Scholar