Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T01:23:30.138Z Has data issue: false hasContentIssue false

The Role of EL2 for the Mobility-Lifetime Product of Photoexcited Electrons in GaAs

Published online by Cambridge University Press:  25 February 2011

G. C. Valley
Affiliation:
Hughes Research Laboratories Malibu, Ca 90265 - USA
H.J. von Bardeleben
Affiliation:
Groupe de Physique des Solides de l’ École Normale Supérieure Centre national de la Recherche ScientifiqueTour 23, 2 place Jussieu 75251 Paris Cedex 05, France.
H. Rajbenbach
Affiliation:
Laboratoire Central de Recherches Thomson-CSF Domaine de Corbeville 91404 Orsay Cedex, France
Get access

Abstract

The mobility lifetime products for photo-electrons in semi-insulating GaAs, which fit successfully the results of photorefractive studies undertaken in the presence of electric fields are three orders of magnitude smaller than those inferred from transport measurements or from the photorefractive effect with no applied electrical field. Consideration of enhanced recombination via EL2 effective-mass states linked to the L-conduction band minimum allows us to fit the dependence of the photorefractive beam coupling gain coefficient on the grating period for both AC fields and moving gratings. A cascade-capture process, which is three orders of magnitude faster than recombination by multiphonon emission from the Γ band to EL2, leads to greatly reduced mobility-lifetime products for field strengths greater than 1 kV/cm. Our results establish the dominant influence of the EL2 defect properties on the recombination processes essential for modelling and optimizing the photorefractive effect in semi-insulating GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Glass, A.M., Jonhson, A.M., Olson, D.H., Simpson, W. and Ballman, A.A., Appl. Phys. Lett. 44, 948 (1984).Google Scholar
2 Klein, M.B., Opt. Lett. 9, 350 (1984)Google Scholar
3 Albanese, G., Kumar, J., and Steier, W.H., Opt. Lett. 11, 650 (1986).Google Scholar
4 Kumar, J., Albanese, G., Steier, W.H., J. Opt. Soc. Am. B, 4, 1079 (1987).Google Scholar
5 Cheng, L-J., Gheen, G., Chao, T.-H., Liu, H.-K., Partovi, A., Katz, J., and Garmire, E.M., Opt. Lett. 12, 705 (1987).Google Scholar
6 Imbert, B., Rajbenbach, H., Mallick, S., Herriau, J.P., and Huignard, J.P., Opt. Lett. 13, 327 (1988).Google Scholar
7 Klein, M.B., McCahon, S.W., Boggess, T.F., and Valley, G.C., J. Opt. Soc. Am. B5, 2467 (1988).Google Scholar
8 Valley, G.C., J. Opt. Soc. Am. B1, 868 (1984).Google Scholar
9 Kumar, J., Albanese, G. and Steier, W., Opt. Com. 63, 191 (1987).Google Scholar
10 Stepanov, S.I. and Petrov, M.P., Opt. Com. 53, 292 (1985).Google Scholar
11 Martin, G.M. and Makram-Ebeid, S., in deep Centers in Semiconductors, a State-of-the-Art Approach, Pantelides, S.T., e. (Gordon & Breach, New York, 1986) Chap.6, pp.399487.Google Scholar
12 Valley, G.C., Rajbenbach, H. and Bardeleben, H.J., submitted to Appl. Phys. Lett. (1989).Google Scholar
13 Sze, S.M., Physics of Semiconductor Devices, p.645648, John Wiley and Sons, New York (1981).Google Scholar
14 Ya Prinz, V. and Rechkunov, S.N., Phys. Stat. Sol. (b) 118, 159 (1983).Google Scholar
15 For a review see for example, Photorefractive Materials and Their Applications, Günter, P. and Huignard, J.P., eds (Springer Verlag, vol.61 and 62, Berlin 1989)Google Scholar