Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T06:17:29.061Z Has data issue: false hasContentIssue false

Rheological behavior of an aluminum nitride nanoparticle suspension in Poly(amic acid)-nmp system

Published online by Cambridge University Press:  10 February 2011

Xiaohe Chen
Affiliation:
Department of Chemistry and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
Kenneth Gonsalves
Affiliation:
Department of Chemistry and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
R. S. Rounds
Affiliation:
Fluid Dynamics, Inc., 1 possumitown road, Piscataway, NJ 08854, USA
Get access

Abstract

Preliminary rheological characterizations of aluminum nitride (AIN) nanoparticle suspensions in nonaqueous Newtonian fluid media, NMP and NMP/poly(amic acid) solutions, reveal marked differences in viscoelastic behavior, at relatively low dispersed phase volume fractions. Dynamic mechanical and steady shear measurements provide experimental evidence of the effective interparticle and polymer/particle interactions in a dispersion process of nonoxide nanoparticles for ceramic/polymer nanocomposites. The rheological nature of the nanoparticle suspensions corresponds to interparticle physicochemical interactions that have been previously concluded and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hanna, J., Attia, Y.A., Advances in Fine Particle Processing (Elsevier, 1990).Google Scholar
2. Russel, W.B., J. Rheol. 24, 287 (1980).Google Scholar
3. Leong, Y.K., Boger, D.V., Parris, D., J. Rheol. 35, 149 (1991).Google Scholar
4. Persello, J., magnin, A., Chang, J., Piau, J.M., Cabane, B., J.Rheol. 38, 1845 (1994).Google Scholar
5. Schowalter, W.R., Annu. Rev. Fluid Mech. 16, 245 (1984).Google Scholar
6. Leong, Y.K., Boger, D.V., J. Colloid. Interface Sci. 136, 249 (1990).Google Scholar
7. Xiao, T.D., Gonsalves, K.E., Strutt, P.R., Chow, G.M., Chen, X., Ceram. Eng. Sci. Proc. 14, 1107 (1993).Google Scholar
8. Chow, G.M., Xiao, T.D., Chen, X., Gonsalves, K.E., J. Mater. Res. 9(1), 168 (1994).Google Scholar
9. Baraton, M.I., Chen, X., Gonsalves, K.E., in Nanotechnology, ACS Symp. Ser., Vol.622, edited by G.M. Chow and K.E. Gonsalves, Chapter 22, p.312 (1996).Google Scholar
10. Chen, X., Gonsalves, k.E., Chow, G.M., Xiao, T.D., Adv. Mater. 6(6), 481 (1994).Google Scholar
11. Chen, X., Gonsalves, K.E., Better Ceramic Through Chemistry VII: Orgainc/Inorganic Hybrid Materials, MRS Symp. Proc., Vol.435, edited by D.W. Schaefer, G.L. Wilkes, C. Sanchez, B. Coltran, p.55 (1996).Google Scholar
12. Baraton, M.I., Chen, X.. Gonsalves, K.E., J. Mater. Chem. 8, 1407 (1996).Google Scholar
13. Chen, X., Gonsalves, K.E., Baraton, M.I., Chem. Mater. 9, 328 (1997).Google Scholar
14. (a) Chen, X., Gonsalves, K.E., J. Mater. Res., 12(5), 1274 (1997); (b) Xiaohe Chen, Ph.D. Thesis, University of Connecticut, 1996.Google Scholar
15. Raghaven, S.R., Khan, S.A., J. Rheol. 39(6), (1995)Google Scholar
16. Patel, P.D., Russel, W.B., J. Rheol. 31(7), 599 (1987)Google Scholar
17. Song, J.G., Evans, J.R.G., J.Rheol. 40(1), 131 (1996).Google Scholar
18. Fowkes, F.N., in Advance in Ceramics, Vol.21, edited by Messing, G., Mazdiyasni, K.S., McCawley, J.W., Haber, R., p. 41 (Am. Ceram. Soc., 1987).Google Scholar