Skip to main content Accessibility help
×
Home

RHEED Pole Figure Measurements of Biaxial Thin Film Growth Front Evolution

  • Gwo-Ching Wang (a1), Yu Liu (a1), Churamani Gaire (a1), Wen Yuan (a1) and Toh-Ming Lu (a1)...

Abstract

The most frequently used characterization technique for biaxial texture formation in thin films is x-ray pole figure analysis. However, x-rays interact weakly with matter and can penetrate a few microns deep into the film. The texture obtained by x-rays is therefore an average texture from the entire thickness of the film. As the texture of a film often changes during growth, information on the basic mechanisms that control the final texture is often lost. In contrast electrons interact strongly with matter and they have very limited penetration and escape depths of a few nm. In this paper we will show how we can use our newly developed reflection high energy electron diffraction (RHEED) surface pole figure technique to probe the surface texture evolution of the growth front from the initial stage (nm thick) to the later stage. The RHEED pole figure technique is a surface-sensitive technique that allows us to obtain information on the dynamic behavior of texture evolution of the growth front during film deposition. We shall explain the principle, measurement, and construction of such RHEED surface pole figures. An example of the biaxial texture evolution of CaF2 due to the atomic shadowing effect during oblique angle deposition is described.

Copyright

References

Hide All
[1]For review see Huang, H., Texture evolution during thin film deposition, in Handbook of Multiscale Materials Modeling, edited by Yip, S. (Springer Science and Business Media 2005), p. 1039.
[2] Freund, Ben, Suresh, Subra, and Freund, L.B., Thin film materials: Stress, defect formation and surface evolution, (Cambridge University Press, 2003).
[3] Ohring, Milton, The materials science of thin films, (Elsevier Science and Technology Books, 2001).
[4] Report, “Nanoscience research for energy needs", DOE BES-cosponsored National Nanotechnology Initiative (NNI) Workshop http://www.sc.doe.gov/bes/reports/list.html March 16-18, 2004.
[5] Parans Paranthaman, M. and Izumi, Teruo, “High performance YBCO-coated supercondcutor wires”, MRS Bulletin August, 533 (2004).
[6] Gaire, C., Clemmer, P.C., Li, H.-F., Parker, T.C., Snow, P., Bhat, I., Lee, S., Wang, G.-C., and Lu, T.-M., J. Cryst. Growth 312, 607 (2010).
[7] Li, H.-F., Snow, P., He, M., Wang, P.-I., Wang, G.-C., and Lu, T.-M., ACS Nano published online http://pubs.acs.org/articlesonrequest/AORftIMt8wMRwxVbPiWaRNG (2010).
[8] Teplin, Charles W., Ginley, David S., and Branz, Howard M., J. of Non-Crystalline Solids 352, 984 (2006).
[9] Yuan, W., Tang, F., Li, H.-F., Parker, T., LiCausi, N., Lu, T.-M., Bhat, I., Wang, G.-C., and Lee, S., Thin Solid Films 517, 6623 (2009).
[10] LiCausi, Nicholas, Yuan, Wen, Tang, Fu, Parker, Thomas, Li, Huafang, Ching Wang, Gwo-, Ming Lu, Toh-, and Bhat, Ishwara, J. of Electronic Materials 38, 1600 (2009).
[11] Findikoglu, Alp T., Choi, Woong, Matias, Vladimir, Holesinger, Terry G., Jia, Quan X., and Peterson, Dean E., Adv. Mater. 17, 1527 (2005).
[12] Selvamanickam, V., Sambandam, S., Sundaram, A., Lee, S., Rar, A., Xiong, X., Alemu, A., Boney, C., and Freundlich, A., J. Cryst. Growth 311, 4553 (2009).
[13] Bauer, E., Growth of oriented films on amorphous surfaces, in Single-Crystal Films Intern. Conf., edited byFrancombe, M. H. and Sato, H. (Oxford: Pergamon Press, Pennsylvania, 1963), p. 43.
[14]For review see Thompson, C.V., Annu. Rev. Mater. Sci. 30, 159 (2000).
[15] Paritosh, , Srolovitz, D.J., Battaile, C.C., Li, X., and Butler, J.E., Acta. Mater. 47, 2269 (1999).
[16] Karpenko, O.P., Bilello, J.C., and Yalisove, S.M., J. Appl. Phys. 82, 1397 (1997).
[17] van der Drift, A., Philips Res. Repts. 22, 267 (1967).
[18] Evans, D.M. and Wilman, H., Acta Cryst. 5, 731 (1952).
[19] Johansen, Christopher G., Huang, Hanchen, and Lu, Toh-Ming, Appl. Phys. Lett. 91, 121914 (2007).
[20] Johansen, Christopher G., Huang, Hanchen, and Lu, Toh-Ming, Computational Materials Science 47, 121 (2009).
[21] Culllity, B.D., Elements of X-ray Diffraction, (Addison-Wesley, 1978).
[22] Tang, F., Wang, G.-C., and Lu, T.-M., J. Appl. Phys. 102, 014306 (2007).
[23] Tang, F., Wang, G.-C., and Lu, T.-M., Appl. Phys. Lett. 89, 241903 (2006).
[24] Tang, F., Parker, T., Wang, G.-C., and Lu, T.-M., Journal of Physics D: Applied Physics 40, R427 (2007).
[25] Helming, K. and Preckwinkel, U., Solid State Phenomena 105, 71 (2005).
[26] Lee, S.L., Windover, D., Doxbeck, M., Nielsen, M., Kumar, A., and Lu, T.-M., Thin Solid Films 377, 447 (2000).
[27] Bunge, H.J. and Klein, H., Zeitschrift Fur Metallkunde 87, 465 (1996).
[28] Ichimiya, A. and Cohen, P.I., Reflection high energy electron diffraction, (Cambridge, 2005).
[29] Braun, W., Applied RHEED: Reflection high energy electron diffraction during crystal growth, (Springer-Verlag, New York, 1999).
[30] Harris, J.J., Joyce, B.A., and Dobson, P.J., Surf. Sci. 103, L90 (1981).
[31] Brewer, R.T., Atwater, H.A., Groves, J.R., and Arendt, P.N., J. Appl. Phys. 93, 205 (2003).
[32] Drotar, Jason T., Lu, T.-M., and Wang, G.-C., J. Appl. Phys. 96, 7071 (2004).
[33] Litvinov, Dmitri and Clarke, Roy, Appl. Phys. Lett. 74, 955 (1999).
[34] Krishnan, R., Liu, Y., Gaire, C., Chen, L., Wang, G.-C., and Lu, T.-M., Nanotechnology 21, 325704 (2010).
[35] Gaire, C., Snow, P., Chan, T.-L., Yuan, W., Riley, M., Liu, Y., Zhang, S.B., Wang, G.-C., and Lu, T.-M., Nanotechnology 21, 445701 (2010).
[36] Li, H.-F., Parker, T., Tang, F., Wang, G.-C., and Lu, T.-M., J. Cryst. Growth 310, 3610 (2008).
[37] Lakhtakia, Akhlesh and Messier, Russell, Sculptured Thin Films: Nanoengineered Morphology and Optics, (SPIE Press, 2005).
[38] Jensen, M. and Brett, M.J., Appl. Phys. A 80, 763 (2005).
[39] Robbie, K. and Brett, M.J., J. of Vacuum Science & Technology A 15(3), 1460 (1997).
[40] Zhao, Y.-P., Ye, D.-X., Wang, G.-C., and Lu, T.-M., Nano Letters 2, 351 (2002).
[41] Wang, Jiang, Huang, Hanchen, Kesapragada, S.V., and Gall, D., Nano Letters 5, 4 (2005).
[42] Alouach, H. and Mankey, G.J., J. Vac. Sci. Technol. A 22, 1379 (2004).
[43] Jensen, M.O. and Brett, M.J., IEEE Trans. on Nanotechnology 4, 269 (2005).
[44] Okamoto, K., J. Appl. Phys. 53, 601 (1982).
[45] Chudzik, M.P., Koritala, R.E., Luo, L.P., Miller, D.J., Balachandran, U., and Kannewurf, C.R., IEEE Trans. Appl. Superconductivity 11, 3469 (2001).
[46] Xu, Y., Lei, C.H., Ma, B., Evans, H., Efstathiadis, H., Rane, M., Massey, M., Balachandran, U., and Bhattacharya, R., Supercond. Sci. Technol. 19, 835 (2006).
[47] Mahieu, S., Ghekiere, P., Depla, D., and De Gryse, R., Thin Solid Films 515, 1229 (2006).
[48] Thompson, K.J., Luhman, D.R., and Hallock, R.B., Surf. Sci. 603, 3249 (2009)

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed