Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-08T11:13:41.005Z Has data issue: false hasContentIssue false

A Review of the use of Proton Magnetic Resonance to Study Superplasticizers

Published online by Cambridge University Press:  25 February 2011

M. Regourd*
Affiliation:
C.E.R.I.L.H., 23 Rue de Cronstadt, 75015 Paris, france
Get access

Abstract

Proton pulse nuclear magnetic resonance can be used to follow the hydration of C3S and C3A, individually and mixed, with and without gypsum and superplasticizers. The variation of the spin-lattice relaxation time from early ages up to the times of setting and hardening is related first to the mobility of water molecules in rapid exchange, then to the progress of solid-water interfaces.

Plasticizers act as retarders to lengthen the induction period. They behave differently with pure phases taken separately than with mixtures, in which a mutual interaction of C3S, C3A, gypsum and admixture has been characterized. Among the three superplasticizers studied, the sulfonated melanine formaldehyde was the strongest retarder, while the sodium sulfonated naphthalene was the weakest.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ochiai, H., Yamamura, H., Furanaga, K., Maki, I., and Watanabe, K., Bull. Chem. Soc. Jpn. 38(6), 945948 (1965).Google Scholar
2. Lahajnar, G., Blinc, R., and Rutar, V., Cem. Concr. Res. 7, 385394 (1977).Google Scholar
3. Blinc, R., Burgar, M., Lahajnar, G., Rozmarin, M., and Rutar, V., J. Am. Ceram. Soc. 61(1–2), 3537 (1978).CrossRefGoogle Scholar
4. Mactavish, J.C., Miljkovic, L., and Pintar, M., Cem. Concr. Res. 15, 367377 (1985).Google Scholar
5. Lippmaa, E., Magi, M., Tarmak, M., Wieker, W., and Grimmer, A.R., Cem. Concr. Res 12, 597603 (1982).Google Scholar
6. Clayden, N.J., Dobson, C.M., Groves, G.W. and Rodger, S.A., Proc. Int. Congr. Chem. Cem., 8th, 1986 III, 5156 (1986).Google Scholar
7. Muller, D., Gessner, W., Samoson, A., Lippmaa, E., and Scheler, G., Polyhedron 5(3), 779785 (1986).Google Scholar
8. Kocuvan, I., Ursic, J., Lahajnar, G., Blinc, R., and Rozmarin, M., Silic. Ind. 10, 223228 (1978).Google Scholar
9. Kocuvan, I., Ursic, J., Barbic, L., Lahajnar, G., Blinc, R., and Rozmarin, M., Silikattechnik 30(1), 2225 (1979).Google Scholar
10. Dimic, D. and Droljc, S., Symposium on Technology of Concrete when Pozzolanas, Slags, and Chemical Admixtures Are Used, Monterrey (RILEM, 1985) pp. 5371.Google Scholar
11. Letellier, M., Van Damme, H., Mortureux, B., and Regourd, M., Proc. Int. Congr. Chem. Cem., 8th, 1986 III, 93100 (1986).Google Scholar
12. Miljkovic, L., Mactavish, J.C., Jian, Jin, Pintar, M.M., Blinc, R., and Lahajnar, G., Cem. Concr. Res. 16, 864870 (1986).Google Scholar
13. Fripiat, J., Letellier, M., and Levitz, P., Philos. Trans. R. Soc. London A 311, 287299 (1984).Google Scholar
14. Regourd, M., Phil. Trans. R. Soc. London A 310, 8592 (1983).Google Scholar
15. Litvan, G.G., Cem. Concr. Res. 6, 139 (1976).Google Scholar
16. Regourd, M., Cim., Betons, Plâtres, Chaux, No.734, 41–48 (1982).Google Scholar
17. Locher, F.W., Richartz, W. and Spring, S., Zem.-Kalk-Gips (10), 435–442 (1976).Google Scholar