Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T10:32:44.079Z Has data issue: false hasContentIssue false

A Review of the Role of Excess si in SIO2 at the Growing Oxide Interface.

Published online by Cambridge University Press:  01 February 2011

Ralph Jaccodine*
Affiliation:
Lehigh University, Bethlehem, Pa.
Get access

Abstract

This paper discusses the issues that arise when ab excess of Si or SiO flux is used to adjust the Deal -Grove model to match the observed growth in the early stages of oxidation. The author uses the insight gained from the modeling of the oxidation of Si-Ge alloys as a background to the discussion. A recent simulation of the thin oxide problem by M. Uematsu et.al. invokes the role of “excess Si” near the interface to adjust the D&G reaction coefficient and also add additional flux to the growing oxide.This paper assesses some of the points in this model as well as the relation with sub bonded Si and/or the reaction barrier layer to oxidationmechanism. A recent proposal by Pasquarello et.al opens new insight into the way the interface may adjust to the growing oxide which challenges our previous mechanistic notions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Deal, B.&Grove, A. J.Appl.Phys. 36,3770,[1965]Google Scholar
2. Sofield, C. &Stoneham, A. Semiconductor Sci. Technol. 10, 215 [1995]Google Scholar
3. Gusev, E.,Lu, H.C.,Gustafsson, T. & Garfunkel, E. Phys.Rev B 52,1759 [1995]Google Scholar
4. Tiller, W. J.Electrochem Soc. 127,625 [1980]; 128,689 [1981]; 130,501 [1983]Google Scholar
5. Helms, C.&Deal, B.The Physics and Chemistry of SiO2 and the Si-SiO2 InterfacePlenum Press Vol 1[1988],Vol 2[1992], Vol 3[1996],Vol 4[2000]Google Scholar
6 Stoneham, A.,Grovenor, C. &Cerezo, A. Phil. Mag. A55 201 [1987]Google Scholar
7. Jaccodine, R. &Drum, C. Appl.Phys.Lett. 8, 29 [1966]Google Scholar
8. Hu, S M. Appl.Phys.Lett. 27, 165 [1975]Google Scholar
9. Dunham, S. &Plummer, J. J.Appl.Phys. 59,2541 [1986]Google Scholar
10. Fahey, P.,Griffin, P.&Plummer, J. Rev.Mod.Phys.61,289 [1989]Google Scholar
11. Walkup, R. & Raider, S. Appl.Phys. Lett. 53,888 [1988]Google Scholar
12 Uematsu, M., Kageshima, H. &Shirashi, K. J.Appl.Phys. 89,1948 [2001]Google Scholar
Kageshima, H.,Shiraishi, K. & Uematsu, M. Jpn.J.Appl.Phys. 38 L921 [1999]Google Scholar
13. Celler, G. & Trimble, L. Appl. Phys Lett. 54, 1427 [1989]Google Scholar
14. Kilpatrick, S.,Jaccodine, R.& Thompson, P. J.Appl.Phys. 81, 8018 [1997]Google Scholar
15. Wagner, C. J.Appl.Phys. 29, 1295 [1958]Google Scholar
16. Brebec, G.,Sequin, R.,Sella, C. Bevenot, J.&Martin, J. Acta Metallurgia 28 327 [1980]Google Scholar
17. Baumvol, I.J.,Krug, C. Stedile, F.,Garris, F.& Schulte, W. Phys.Rev.B 60 1492 [1986]Google Scholar
18. Grunthaner, F.J.&Grunthaner, P. Mater.Sci.Rept. 1,65 [1986]Google Scholar
19. Pasquarello, A.,Hybertsen, M. & Car, R. Nature 396,58 [1998]Google Scholar
20. Pasquarello, A.,Hybertsen, M. & Car, R. Fundemental Aspects of Si Oxidation.Chapal, Y. editor Springer Press[2001]Google Scholar