Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-15T18:06:19.102Z Has data issue: false hasContentIssue false

Retardation of Radionuclides by Rock Units Along the Path to the Accessible Environment

Published online by Cambridge University Press:  25 February 2011

A. E. Ogard
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
K. Wolfsberg
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
W. R. Daniels
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
J. Kerrisk
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
R. S. Rundberg
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
K. W. Thomas
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Extract

The most likely mechanism for release of radionuclides from a repository is transport in water from the repository to the accessible environment. The processes that can retard the movement of radionuclides in water are sorption, precipitation, and diffusion. These processes can occur anywhere along flow paths from the repository to the accessible environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Daniels, W. R., et al. , “Summary Report on the Geochemistry of Yucca Mountain and Environs,” Los Alamos National Laboratory report LA-9328-MS (1982).Google Scholar
2. Vine, E. N., Bayhurst, B. P., Daniels, W. R., DeVilliers, S. J., Erdal, B. R., Lawrence, F. O., and Wolfsberg, K., “Radionuclide Transport and Retardation in Tuff,” Scientific Basis for Nuclear Waste Management, Vol. 3, Moore, John G., Ed., pp 483490 (1981).Google Scholar
3. Wolfsberg, K., Daniels, W. R., Erdal, B. R., and Vaniman, D. T., comps., “Research and Development Related to the Nevada Nuclear Waste Storage Investigations: April 1-June 30, 1982,” Los Alamos National Laboratory report LA-9484-PR.Google Scholar
4. Lemire, L. J. and Tremaine, P. R., “Uranium and Plutonium Equilibria in Aqueous Solutions to 200 Degrees C,” Journal of Chemical Engineering Data, 25, pp. 363369 (1980).Google Scholar
5. Rai, D., Serne, R. J., and Moore, D. A, “Solubility of Plutonium Compounds and Their Behavior in Soils,” Soil Science Society of America Journal, 44, pp. 490495 (1980).Google Scholar
6. Allard, B., αSolubilities of Actinides in Neutral or Basic Solutions,” Actnides in Perspective, Edelstein, N. M., ed., Pergamon Press, New York, pp. 553580 (1982).CrossRefGoogle Scholar
7. Rai, D., Serne, R. J., and Swanson, J. L., “Solution Species of Plutonium in the Environment,” Journal of Environmental Quality, 9, pp. 417420 (1980).Google Scholar
8. Bidoglio, G., “Characterization of Am(III) Complexes with Bicarbonate and Carbonate Ions at Groundwater Concentration Levels,” Radiochemical and Radioanalytical Letters, 53, pp. 4560 (1982).Google Scholar
9. Lundqvist, R., “Hydrophilic Complexes of the Actinides. I. Carbonates of Trivalent Americium and Europium,” Acta Chemica Scand. A, 36, pp. 741750 (1982).Google Scholar