Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-14T19:52:29.816Z Has data issue: false hasContentIssue false

Response of Zircon to Electron and Ne+ Irradiation

Published online by Cambridge University Press:  10 February 2011

R. Devanathan
Affiliation:
Pacific Northwest National Laboratory, Richland WA 99352, ram@pnl.gov
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland WA 99352, ram@pnl.gov
L. A. Boatner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Zircon (ZrSiO4) is an actinide host phase in vitreous ceramic nuclear waste forms and a potential host phase for the disposition of excess weapons plutonium. In the present work, the effects of 800 and 900 keV electron, and 1 MeV Ne+ irradiations on the structure of single crystals of ZrSiO4 have been investigated. The microstructural evolution during the irradiations was studied in situ using a high-voltage electron microscope interfaced to an ion accelerator at Argonne National Laboratory. The results indicate that electron irradiation at 15 K cannot amorphize ZrSiO4 even at fluences an order of magnitude higher than that required for amorphization by 1.5 MeV Kr + ions. However, the material is readily amorphized by I MeV Ne+ irradiation at 15 K. The temperature dependence of this amorphization is discussed in light of previous studies of radiation Zdamage in ZrSiO4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ewing, R. C., Weber, W. J., and Clinard, F. W. Jr.,, Prog. Nucl. Energy, 29(2), p. 63 (1995).Google Scholar
2. Weber, W. J., Ewing, R. C., and Wang, L. M., J. Mater. Res. 9(3), p. 688 (1994).Google Scholar
3. Wang, L. M. and Ewing, R. C., Nucl. Instrum. Methods B65, p. 324 (1992).Google Scholar
4. Zinkle, S. J., J. Nucl. Mater 219, p. 113 (1995).Google Scholar
5. Zinkle, S. J. and Snead, L. L., Nucl. Instrum. Methods B 116, p.92 (1996).Google Scholar
6. Devanathan, R., Sickafus, K. E., Weber, W. J., and Nastasi, M., J. Nucl. Mater. (1998) (in press).Google Scholar
7. Boatner, L. A. and Sales, B. C., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C. (Elsevier, Amsterdam, 1988), p. 49 5.Google Scholar
8. Allen, C. W., Funk, L. L., Ryan, E. A., and Taylor, A., Nucl. Instrum. Methods B40–41, p.553 (1988).Google Scholar
9. Oen, O. S., U. S. Atomic Energy Commission Report, ORNL-4897 (1973).Google Scholar
10. Ziegler, J. F., Biersack, J. P., Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, Oxford, 1985.Google Scholar
11. Williford, R. E., Devanathan, R., and Weber, W. J., Nucl. Instrum. and Methods B (1998) (in press)Google Scholar
12. Bourgoin, J. C. and Corbett, J. W., Rad. Effects 36, p. 157 (1978).Google Scholar
13. Abe, H., Kinoshita, C., Okamoto, P. R., and Rehn, L. E., J. Nucl. Mater. 212–215, p.298 (1994).Google Scholar
14. Koike, J., Ph. D. thesis, Northwestern University (1989).Google Scholar
15. Meldrum, A., Boatner, L. A., and Ewing, R. C., J. Mater. Res. 12(7), p.1816 (1997)Google Scholar