Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-08T10:32:40.743Z Has data issue: false hasContentIssue false

Resonant-Cavity Infrared Devices

Published online by Cambridge University Press:  10 February 2011

J. L. Pautrat
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA Grenoble, 17 rue des Martyrs - 38054 Grenoble CEDEX 9, Francejpautrat@cea.fr
E. Hadji
Affiliation:
Departement de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA Grenoble, 17 rue des Martyrs - 38054 Grenoble CEDEX 9, France
G. Mula
Affiliation:
Departement de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA Grenoble, 17 rue des Martyrs - 38054 Grenoble CEDEX 9, France
J. Bleuse
Affiliation:
Departement de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA Grenoble, 17 rue des Martyrs - 38054 Grenoble CEDEX 9, France
N. Magnea
Affiliation:
Departement de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA Grenoble, 17 rue des Martyrs - 38054 Grenoble CEDEX 9, France
Get access

Abstract

The CdxHg1−x Te compounds are well suited to the design of semiconducting devices incorporating an optical microresonator since they display a wide variation of bandgap and refractive index with composition x, while the lattice parameter remains practically unchanged. It is then possible to create a specific optical function by stacking high quality pseudomorphic layers on a crystalline substrate.

Microcavities resonating in the 3–5 μm range have been made by growing a lower Bragg mirror (10.5 periods) and a nominally undoped cavity medium containing a 50 nm active layer (CdTe-HgTe pseudo-alloy). The upper mirror is a gold layer deposited on the cavity. The emission of these Resonant Cavity Light Emitting Diodes has been observed in the 3–4.5 μm range up to room temperature. It coincides with the cavity resonance mode (linewidth 8 meV). With the addition of a ZnS/YF3 upper mirror, a Vertical Cavity Surface Emitting Laser at 3.06 μm has also been demonstrated.

The microcavity concept appears to be very useful for designing new devices for the 3–5 μm range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1- Haroche, S., Kleppner, D., Physics Today 42 (1), 2430 (1989).Google Scholar
2- Yamamoto, H., Slusher, R. E., Physics Today, 46 (6), 66 (1993).Google Scholar
3- Schubert, E.R., Hunt, N.E.J., Micovic, M., Malik, R.J., Sivco, D.L., Cho, A. Y., Zydzik, G.J., Science 265, 943 (1994).Google Scholar
4. Jensen, B. and Torabi, A., J. Appl. Phys. 54, 5945 (1983).Google Scholar
5. Hadji, E., Bleuse, J., Magnea, N., Pautrat, J.L., Appl. Phys. Lett. 67, 2591 (1995).Google Scholar
6. Hadji, E., Bleuse, J., Magnea, N., Pautrat, J.L., Solid-State Electron. 40, 473 (1996).Google Scholar
7. Baron, T., Saminadayar, K., Tatarenko, S., J. Cryst. Growth 159, 271 (1996).Google Scholar
8. Hunt, N.E.J., Schubert, E.F., Kopf, R.F., Sivco, D.L., Cho, A.Y., Zydzik, G.J., Appl. Phys. Lett. 63, 2600 (1993).Google Scholar
9. Deppe, D.G., Lei, C., Lin, C.C., Huffaker, D.L., J. Modern Opties, 41, 325 (1994).Google Scholar
10. Pautrat, J.L., Hadji, E., Bleuse, J., Magnea, N., J. Electron. Mat. 25, 1387, (1996).Google Scholar
11. Blondel, J., De Neve, H., Demeester, P., Van Daele, P., Borghs, G., Baets, R.. Electrn. Lett., 31, 1286 (1995).Google Scholar
12. Yamamoto, Y., Machida, S., Björk, G., Phys. Rev. A 44, 657 (1991).Google Scholar
13. Huffaker, D.L., Lei, C., Deppe, D.G., Pinzone, C.J., Neff, J.G., Dupuis, R.D., Appl. Phys. Lett. 60, 3203 (1992).Google Scholar
14. Huffaker, D.L., Lin, C.C., Shin, J., Deppe, D.G., Appl. Phys. Lett. 66, 3096 (1995).Google Scholar
15. Huffaker, D.L., Deppe, D.G., Appl. Phys. Lett. 67, 2594 (1995).Google Scholar
16. Bonnet-Gamard, J., Bleuse, J., Magnea, N., Pautrat, J.L., J. Appl. Phys. 78, 578 (1995).Google Scholar
17. Bonnet-Gamard, J., Bleuse, J., Magnea, N., Pautrat, J.L., J. Cryst. Growth, 159, 613 (1996).Google Scholar
18. Hadji, E., Bleuse, J., Magnea, N., Pautrat, J.L., Appl. Phys. Lett. 68, 2480 (1996).Google Scholar
19. Bonnet-Gamard, J., thesis, Grenoble, France, 1996 (unpublished).Google Scholar