Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-23T07:15:49.459Z Has data issue: false hasContentIssue false

Resolution Limits of Focused-Ion-Beam Resist Patterning

Published online by Cambridge University Press:  25 February 2011

R. L. Kubena*
Affiliation:
Hughes Research Laboratories 3011 Malibu Canyon Road, Malibu, CA 90265
Get access

Abstract

We have recently demonstrated the ability to focus a 50-keV Ga+ beam to an 8-nm-diameter spot diameter. This ultra-high resolution probe has been used to study the resolution limits of conventional resists for focused-ion-beam lithography. Lines and dots in poly (methylmethacrylate) resist as small as 7–8 nm have been formed with high throughput. In addition, no proximity effects have been observed for 25 to 30-nm size features on high-z substrates. However, for the smallest geometries obtainable, the pattern fidelity and resolution are most likely limited by ion scattering effects and statistical dose fluctuations. The use of lighter ions (such as He, Li, or Be) with lower sensitivity resists should, in principle, allow focused-ion-beam lithography to be extended to the sub-5 nm regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McCord, M. A., Viswanathan, R., Hohn, F. J., Wilson, A. D., Naumann, R., and Newman, T. H., J. Vac. Sci. Technol. B 10(6), Nov/Dec 1992.Google Scholar
2. McCord, M. A. and Newman, T. H., J. Vac. Sci. Technol. B 10(6), Nov/Dec 1992.Google Scholar
3. Lee, Y- H., Browning, R., and Pease, R. F., J. Vac. Sci. Technol. B 10(6), Nov/Dec 1992.Google Scholar
4. Rhee, K. W., Ma, D. I., Dodisz, E., Maman, C., Peckerar, M. C., Ghanbari, R. A., Smith, H. L., J. Vac. Sci. Technol. B 10(6), Nov/Dec 1992.Google Scholar
5. Atkinson, G. M., Stratton, F. P., Kubena, R. L., and Wolfe, J. C., J. Vac. Sci. Technol. B10(6), Nov/Dec 1992.Google Scholar
6. Kubena, R. L., Ward, J. W., Stratton, F. P., Joyce, R. J., and Atkinson, G. M., J. Vac. Sci. Technol. B 9(6), 3079 (1991).Google Scholar
7. Kubena, R. L., Stratton, F. P., Ward, J. W., Atkinson, G. M., and Joyce, R. J., J. Vac. Sci. Technol. B 7(6), 1798 (1989).Google Scholar
8. Ward, J. W., Kubena, R. L., and Joyce, R. J., J. Vac. Sci. Technol. B 9(6), 3090 (1991).CrossRefGoogle Scholar
9. Komuro, M., Hiroshima, H., Tanoue, H., and Kanayama, T., J. Vac. Sci. Technol. B 1(4), 985 (1983).Google Scholar
10. Emoto, F., Gamo, K, Namba, S., Samoto, N., and Shimizu, R., Jpn. J. Appl Phys. 24, L809 (1985).Google Scholar