Skip to main content Accessibility help
×
Home

Residual Stress in Sputtered Silicon Oxycarbide Thin Films

  • Ping Du (a1), I-Kuan Lin (a1) (a2), Yunfei Yan (a1) and Xin Zhang (a1)

Abstract

Silicon carbide (SiC) has received increasing attention on the integration of microelectro-mechanical system (MEMS) due to its excellent mechanical and chemical stability at elevated temperatures. However, the deposition process of SiC thin films tends to induce relative large residual stress. In this work, the relative low stress material silicon oxide was added into SiC by RF magnetron co-sputtering to form silicon oxycarbide (SiOC) composite films. The composition of the films was characterized by Energy dispersive X-ray (EDX) analysis. The Young’s modulus and hardness of the films were measured by nanoindentation technique. The influence of oxygen/carbon ratio and rapid thermal annealing (RTA) temperature on the residual stress of the composite films was investigated by film-substrate curvature measurement using the Stoney’s equation. By choosing the appropriate composition and post processing, a film with relative low residual stress could be obtained.

Copyright

References

Hide All
1. Campbell, S. A., The Science and Engineering of Microelectronic Fabrication. (Oxford, 1996).
2. Zhang, X., Zhang, T. Y., Wong, M. and Zohar, Y., Sens. Actuator A-Phys. 64, 109115 (1998).
3. Cao, Z., Zhang, T. Y. and Zhang, X., J. Appl. Phys. 97, 104909 (2005).
4. Cao, Z. and Zhang, X., Sensor. Actuat A-Phys. 127, 221227 (2006).
5. Yoshihara, H., Mori, H. and Kiuchi, M., Thin Solid Films 76, 110 (1981).
6. Guzman, L., Tuccio, S., Miotello, A., Laidani, N., Calliari, L. and Kothari, D. C., Surf. Coat. Tech. 66, 458463 (1994).
7. Denisse, C. M. M., Troost, K. Z., Elferink, J. B. O., Habraken, F., Vandeweg, W. F. and Hendriks, M., J. Appl. Phys. 60, 25362542 (1986).
8. Zhang, X., Zhang, T. Y., Wong, M. and Zohar, Y., J. Microelectromech. Syst. 7, 356364 (1998).
9. Liu, Y., Lin, I. K. and Zhang, X., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 489, 294301 (2008).
10. Choi, D., Ph.D. Thesis, Massachusetts Institute of Technology, 2004.
11. Mehregany, M., Zorman, C. A., Rajan, N. and Wu, C. H., Proc. IEEE 86, 15941610 (1998).
12. Putty, M. W., Chang, S.-C., Howe, R. T., Robinson, A. L. and Wise, K. D., Sens. Actuator 20, 143151 (1989).
13. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).
14. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 19, 320 (2004).
15. Stoney, G. G., Proc. Roy. Soc. A-Math. Phy. 82, 172175 (1909).
16. Dheurle, F. M. and Harper, J. M. E., Thin Solid Films 171, 8192 (1989).
17. Ziebert, C., Ye, J., Ulrich, S., Prskalo, A. P. and Schmauder, S., J. Nanosci. Nanotechno. 10, 19 (2010).
18. Chen, K. S., Zhang, X. and Lin, S. Y., Thin Solid Films 434, 190202 (2003).
19. Thornton, J. A. and Hoffman, D. W., Thin Solid Films 171, 531 (1989).

Keywords

Related content

Powered by UNSILO

Residual Stress in Sputtered Silicon Oxycarbide Thin Films

  • Ping Du (a1), I-Kuan Lin (a1) (a2), Yunfei Yan (a1) and Xin Zhang (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.