Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-12T02:51:12.392Z Has data issue: false hasContentIssue false

Residual Stress and Raman Spectra of Laser Deposited Highly Tetrahedral-Coordinated Amorphous Carbon Films

Published online by Cambridge University Press:  22 February 2011

T. A. Friedmann
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D. R. Tallant
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R. L. Simpson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
F. Dominguez
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

We are studying carbon thin films by using a pulsed excimer laser to ablate pyrolytic graphite targets to form highly tetrahedral coordinated amorphous carbon (at-C) films. These films have been grown on room temperature p-type Si (100) substrates without the intentional incorporation of hydrogen. In order to understand and optimize the growth of at-C films, parametric studies of the growth parameters have been performed. We have also introduced various background gases (H2, N2 and Ar) and varied the background gas pressure during deposition. The residual compressive stress levels in the films have been measured and correlated to changes in the Raman spectra of the at-C band near 1565 cm−1. The residual compressive stress falls with gas pressure, indicating a decreasing atomic sp3-bonded carbon fraction. We find that reactive gases such as hydrogen and nitrogen significantly alter the Raman spectra at higher pressures. These effects are due to a combination of chemical incorporation of nitrogen and hydrogen into the film as well as collisional cooling of the ablation plume. In contrast, films grown in non-reactive Ar background gases show much less dramatic changes in the Raman spectra at similar pressures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berger, S. D., McKenzie, D. R., and Martin, P. J., Philos. Mag. Lett. 57, 285 (1988).Google Scholar
2. Lossy, R., Pappas, D. L., Roy, R. A., and Cuomo, J. J., Appl. Phys. Lett. 61, 171 (1992).Google Scholar
3. Cuomo, J. J., Doyle, J. P., Bruley, J., and Liu, J. C., J. Vac. Sci. Technol. A 9, 2210 (1991).Google Scholar
4. Weissmantel, C., Shurer, C., Frohlich, F., Grau, P., and Lehmann, H., Thin Solid Films 61, L5 (1979).Google Scholar
5. Xiong, F., Wang, Y. Y., Leppert, V., and Chang, R. P. H., J. Mater. Res. 8, 2265 (1993).Google Scholar
6. Collins, C. B., Davanloo, F., Jander, D. R., Lee, T. J., Park, H., and You, J. H., J. Appl. Phys. 69, 7862 (1991).Google Scholar
7. Davanloo, F., Juengerman, E. M., Jander, D. R., Lee, T. J., and Collins, C. B., J. Appl. Phys. 67, 2081 (1990).Google Scholar
8. Krishnaswamy, J., Rengan, A., Narayan, J., Vedam, K., and Mchargue, C. J., Appl. Phys. Lett. 54, 2455 (1989).Google Scholar
9. Marquardt, C. L., Williams, R. T., and Nagel, D. J., in Plasma Synthesis and Etching of Electronic Materials, Chang, R. P. H., and Abeles, B., Eds. (Materials Research Society, Pittsburgh, 1985), vol. 38, p. 325.Google Scholar
10. Pappas, D. L., Sanger, K. L., Bruley, J., Krakow, W., Cuomo, J. J., Gu, T., and Collins, R. W., J. Appl. Phys. 71, 5675 (1992).Google Scholar
11. Parmeter, J. E., Tallant, D. R., and Siegal, M. P., inNovel Forms of Carbon II, Renschler, C. L., Cox, D., Pouch, J., and Achiba, Y., Eds. (Materials Research Society, Pittsburgh, 1994).Google Scholar
12. Xiong, F., Wang, Y. Y., and Chang, R. P. H., Phys. Rev. B 48, 8016 (1993).Google Scholar
13. Siegal, M. J., Friedmann, T. A., Kurtz, S. R., Tallant, D. R., Simpson, R. L., Dominguez, F., and McCarty, K. F., in Novel Forms of Carbon II, Renschler, C. L., Cox, D., Pouch, J., and Achiba, Y., Eds. (Materials Research Society, Pittsburgh, 1994).Google Scholar
14. McKenzie, D. R., Muller, D., and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773 (1991).Google Scholar
15. McKenzie, D. R., Muller, D. A., Kravtchinskaia, E., Segal, D., D. Cockayne, J. H., Amaratunga, G., and Silva, R., Thin Solid Films 206, 198 (1991).Google Scholar
16. Davis, C. A., Thin Solid Films 226, 30 (1993).Google Scholar
17. Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
18. Davidenkov, N. N., Sov. Phys. Sol. State 2, 2595 (1961).Google Scholar
19. Hoffman, R. W., Phys. Thin Films 3, 211 (1966).Google Scholar
20. Brantley, U. A., J. Appl. Phys. 44, 534 (1973).Google Scholar