Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-17T06:41:36.606Z Has data issue: false hasContentIssue false

Relationship Between Strained Silicon-Oxygen Bonds and Radiation Induced Paramagnetic Point Defects in Silicon Dioxide

Published online by Cambridge University Press:  28 February 2011

W.L. Warren
Affiliation:
The Pennsylvania State University.,University Park,PA 16802 Sandia National Laboratories,Albuquerque,NM 87185
P.M. Lenahan
Affiliation:
The Pennsylvania State University.,University Park,PA 16802
C.J. Brinker
Affiliation:
The Pennsylvania State University.,University Park,PA 16802 Sandia National Laboratories,Albuquerque,NM 87185
C.S. Ashley
Affiliation:
The Pennsylvania State University.,University Park,PA 16802 Sandia National Laboratories,Albuquerque,NM 87185
Get access

Abstract

We have investigated the radiation induced generation of paramagnetic point defects in high surface area sol-gel silicates containing various concentrations of the Raman active 608 cm−1 D2 “defect” band attributed to cyclic trisiloxanes (3 membered rings). Our results indicate that strained silicon-oxygen bonds due to three membered rings are the dominant E΄ (trivalent silicon center) and paramagnetic oxygen center precursors at high irradiation doses for silicates containing large concentrations of the D2 species. These results directly demonstrate that atomic level stress does play a role in the radiation damage process of silicon dioxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Hughes, H.L. and Giroux, R.R., Electronics, 37, 58, (1964).Google Scholar
2) A complete discussion and list of references dealing with ionizing radiation effects on MOS devices can be found in, Ionizing Radiation Effects in MOS Devices and Circuits, eds. Ma, TP. and Dressendorfer, P.V., (Wiley N.Y., 1989).Google Scholar
3) Mitchell, E.W.J. and Paige, E.G.S., Phil. Mag., 8, 1085 (1956).Google Scholar
4) Griscom, D.L. and Friebele, E.J., Radiation Effects, 65, 63, (1982).Google Scholar
5) Weeks, R.A., J. Appl. Phys., 27, 1376 (1956).Google Scholar
6) Silsbee, R.H., J. Appl. Phys., 32, 1456 (1961).Google Scholar
7) Griscom, D.L., Friebele, E.J. and Sigel, G.H., Solid State Commun., 15, 479 (1974).Google Scholar
8) Friebele, E.J., Griscom, D.L., Stapelbroek, M. and Weeks, R.A., Phys. Rev. Lett., 42, 1346 (1979).Google Scholar
9) Feigl, F.J., Fowler, W.B. and Yip, K.L., Solid State Commun., 14, 225 (1974).Google Scholar
10) Yip, K.L. and Fowler, W.B., Phys. Rev. B, 11, 2327 (1975).Google Scholar
11) Lenahan, P.M. and Dressendorfer, P.V., J. Appl. Phys., 55, 3495 (1984).Google Scholar
12) Witham, H.S. and Lenahan, P.M., Appl. Phys. Lett., 51, 1007 (1987).Google Scholar
13) We are unable to specify if the paramagnetic oxygen centers are peroxy radicals or nonbridging oxygen centers since the g tensor elements of these two point defects are similar. 17O isotope experiments are needed to prove the identity of our paramagnetic oxygen centers. Please see references 4 and 8 for the currently ‘accepted’ precursor models for these oxygen defect centers.Google Scholar
14) Revez, A.G., IEEE Trans. Nucl. Sci., NS–24, 2102, (1977).Google Scholar
15) Grunthaner, F.J. and Grunthaner, P.J., Mat. Sci. Rep., 1, 69 (1986).Google Scholar
16) Devine, R.A.B. and Arndt, J., Phys. Rev. B, 35, 9376 (1989).Google Scholar
17) Walrafen, G.E. and Stone, J., Appl. Spectrosc., 29, 337, (1975).Google Scholar
18) Stolen, R.H. and Walrafen, G.E., J. Chem. Phys., 64, 2623 (1976).Google Scholar
19) Sen, P.N. and Thorpe, M.F., Phys. Rev. B, 15, 4030 (1978).Google Scholar
20) Galeener, F.L., Phys. Rev. B, 19, 4292 (1979).Google Scholar
21) Galeener, F.L., Sol. State Commun., 44, 1037 (1982).Google Scholar
22) Galeener, F.L., J. Non Cryst. Solids, 49, 53 (1982).Google Scholar
23) Galeener, F.L., Barrio, R.A., Martinez, E., and Elliot, R.J., Phys. Rev. Lett., 53, 2429 (1984).Google Scholar
24) Brinker, C.J., Tallant, D.R., Roth, E.P. and Ashley, C.S., J. Non Cryst. Solids, 82, 117 (1986).Google Scholar
25) Brinker, C.J., Kirkpatrick, R.J., Tallant, D.R., Bunker, B.C. and Montez, B., J. Non Cryst.Solids, 99, 418 (1988).Google Scholar
26) Geissberger, A.E. and Galeener, F.L., Phys. Rev. B, 28, 3266 (1983).Google Scholar
27) O'Keeffe, M. and Gibbs, G.V., J. Chem. Phys., 81, 876 (1984).Google Scholar
28) Phillips, J.C., J. Non Cryst. Solids, 63, 347 (1982).Google Scholar
29) Bell, R.J. and Dean, P., Phil. Mag., 25, 1381 (1972).Google Scholar
30) Wright, A. and Erwin Desa, J., Phys. Chem. Glass, 19, 140, (1978).Google Scholar
31) Newton, M.D. and Gibbs, G.V., Physics and Chem. of Minerals, 6, 221 (1980).Google Scholar
32) Gottardi, V., Guglielmi, M., Bertoluzza, A., Fagano, C. and Morelli, M.A., J. Non Cryst. Solids, 63, 71 (1984).Google Scholar
33) Michalske, T.A. and Bunker, B.C., J. Appl. Phys., 56, 2686 (1984).Google Scholar