Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-04T17:52:02.224Z Has data issue: false hasContentIssue false

The Relationship Between Near-Surface Mechanical Properties, Loading Rate And Surface Chemistry

Published online by Cambridge University Press:  10 February 2011

A. B. Mann
Affiliation:
The Johns Hopkins University, Dept. of Materials Science & Engineering, 3400 N. Charles St., Baltimore MD21218, USA.
P. C. Searson
Affiliation:
The Johns Hopkins University, Dept. of Materials Science & Engineering, 3400 N. Charles St., Baltimore MD21218, USA.
J. B. Pethica
Affiliation:
Oxford University, Dept. of Materials, Parks Road, Oxford, OXI 3PH, UK.
T. P. Weihs
Affiliation:
The Johns Hopkins University, Dept. of Materials Science & Engineering, 3400 N. Charles St., Baltimore MD21218, USA.
Get access

Abstract

The presence of thin surface films and adsorbate layers on both metals and ceramics can cause dramatic changes in the mechanical response of the material. A similar, related, variation in tribological properties has also been observed. Though the importance of surface effects is well known and widely documented, the exact physical and chemical mechanisms that are operating remain poorly understood. The development of point probe techniques now permits the examination of mechanical and tribological properties on the same length scale as the surface films. Recently, the utilization of these testing techniques has provided a clear insight into the mechanical processes which are operating on the atomic scale. The nanoindentation results presented here show that the mechanical deformation of an individual nano-contact is a highly dynamic phenomena in which the tip-momentum on contact, as well as the loading rate during the indentation, dictate the observed mechanical properties of the material. These results indicate that the initiation of plastic deformation is dependent on the stability of atomic-size surface asperities which can be deformed irreversibly by the high stresses generated during the initial contact. Additionally, the generation of dislocations and the presence of discontinuities in the loading curve are shown to depend upon the loading rate. More significantly, it has been found that modifying the surface chemistry can cause dramatic changes in both the mode of deformation and the time-dependence of nano-scale mechanical properties. The principal conclusion that can be drawn is that the high stresses which operate over short distances make time and temperature dependent phenomena, such as diffusion and the dissipation of energy via phonons, of vital importance in determining the near-surface mechanical properties of a material. Such effects are further magnified in tribological processes where normal and tangential loading of the surface leads to the repeated making and breaking of nano-asperity contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1]Bowden, F. P. and Tabor, D., The Friction & Lubrication of Solids, (Methuen: London, 1964).Google Scholar
[2]Bowden, F. P. and Tabor, D., Friction & Lubrication, (Methuen: London, 1967).Google Scholar
[3]Latanision, R. M. and Fourie, J. T. (Editors), Surface Effects in Crystal Plasticity, (Noordhof: Leyden, 1977).Google Scholar
[4]Rebinder, P. A., Proceedings 6th Physics Conference, (State Press: Moscow, 1928) p. 29.Google Scholar
[5]Johnson, K. L., Contact Mechanics, 1st Ed. (Cambridge University Press, 1985).Google Scholar
[6]Gane, N. and Bowden, F. P., J. Appl. Phys. 39, 1432 (1968).Google Scholar
[7]Pethica, J. B. and Tabor, D., Surf. Sci. 89, 182 (1979).Google Scholar
[8]Pashley, M. D. and Tabor, D., Vacuum 31, 619 (1981).Google Scholar
[9]Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P. and Wyrobeck, J. T., Acta Mat. 44, 3585 (1996).Google Scholar
[10]Gerberich, W. W., Venkataraman, S. K., Huang, H., Harvey, S. E. and Kohlstedt, D. L., Acta Mat. 43, 1569 (1995).Google Scholar
[11]Hainsworth, S. V. and Page, T. F., J. Mat. Sci. 29, 5529 (1994).Google Scholar
[12]Mann, A. B. and Pethica, J. B., Langmuir 12, 4583 (1996).Google Scholar
[13]Binnig, G., Quate, C. F. and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).Google Scholar
[14]Burnham, N. A. and Colton, R. J., J. Vac. Sci. Tech. A 7, 2906 (1989).Google Scholar
[15]Mate, C. M., McLelland, G. M., Erlandsson, R. and Chiang, S., Phys. Rev. Lett. 59, 1942 (1987).Google Scholar
[16]Jarvis, S. P., Oral, A., Weihs, T. P. and Pethica, J. B., Rev. Sci. Inst. 64, 3515 (1993).Google Scholar
[17]Pethica, J. B., Hutchings, R. and Oliver, W. C., Phil. Mag. A 43, 593 (1983).Google Scholar
[18]Field, J. S. and Swain, M. V., J. Mat. Res. 10, 101 (1995).Google Scholar
[19]Newey, D., Wilkins, M. A. and Pollock, H. M., J. Phys. E: Sci. Inst. 15, 119 (1982).Google Scholar
[20]Landman, U., Luedtke, W. D., Burnham, N. A. and Colton, R. J., Science 248, 454 (1990).Google Scholar
[21]Robbins, M. O., Thompson, P. A. and Grest, G. S., MRS Bulletin 18 (5), 45 (1993).Google Scholar
[22]Sutton, A. P., Pethica, J. B., Rafii-Tabor, H. and Nieminen, J. A. in Electron Theory in Alloy Design, edited by Pettifor, D. G. and Cottrell, A. H. (Institute of Materials: London, 1992) p. 191.Google Scholar
[23]Tadmor, E. B., Ortiz, M. and Phillips, R., Phil. Mag. A 73, 1529 (1996).Google Scholar
[24]Mann, A. B. and Pethica, J. B., Appl. Phys. Lett. 69, 907 (1996).Google Scholar
[25]Mann, A. B. and Pethica, J. B., Phil. Mag. A, (submitted Nov. 1997).Google Scholar
[26]Lucas, B. N. and Oliver, W. C., in Thin Films: Stresses & Mechanical Properties VI, edited by Gerberich, W. W., et al (Mater. Res. Soc. Symp. Proc. 436, 1997) p. 233.Google Scholar
[27]Weihs, T. P. and Pethica, J. B., in Thin Films: Stresses & Mechanical Properties III, edited by Nix, W. D., et al (Mater. Res. Soc. Symp. Proc. 239, 1992) p. 325.Google Scholar
[28]Asif, S. A. Syed and Pethica, J. B., Phil. Mag. A, 76, 1105 (1997).Google Scholar
[29]Pethica, J. B. and Sutton, A. P., in Forces in Scanning Probe Methods, edited by Guntherodt, H.-J., et al (Kluwer: Netherlands, 1995) p. 353.Google Scholar
[30] Nanoindenter is a tradename of Nanoinstruments Ltd., Oakridge, Tennessee.Google Scholar
[31]Mann, A. B. and Pethica, J. B., in Thin Films: Stresses & Mechanical Properties VI, edited by Gerberich, W. W., et al (Mater. Res. Soc. Symp. Proc. 436, 1997) p. 153.Google Scholar
[32]Mann, A. B., Pethica, J. B., Nix, W. D. and Tomiya, S., in Thin Films: Stresses & Mechanical Properties, edited by Baker, S. P., et al (Mater. Res. Soc. Symp. Proc. 356, 1997) p. 271.Google Scholar
[33]Mann, A. B., Nanomechanical Measurements: Surface and Environmental Effects, D.Phil. Thesis, (Oxford University, Michaelmas 1995).Google Scholar
[34]Pethica, J. B. and Oliver, W. C. in Thin Films: Stresses & Mechanical Properties, edited by Bravman, J. C., et al (Mater. Res. Soc. Symp. Proc. 130, 1989) p. 13.Google Scholar
[35]Pethica, J. B. and Oliver, W. C., Physica Scripta, T 19, 61 (1989).Google Scholar
[36]Page, T. F., Oliver, W. C. and McHargue, C. J., J. Mat. Res. 7, 450 (1992).Google Scholar
[37]Hirsch, P. B., Pirouz, P., Roberts, S. G. and Warren, P. D., Phil. Mag. B, 52, 759 (1985).Google Scholar
[38]Choi, S. K., Mihara, M. and Ninomiya, T., Jap. J. Appl. Phys., 16, 737 (1977).Google Scholar
[39]Boivin, P., Rabier, J. and Garem, H., Phil. Mag. A, 61, 647 (1990).Google Scholar
[40]Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd Ed. (Wiley: New York, 1982).Google Scholar
[41]Weertman, J. and Weertman, J. R., Elementary Dislocation Theory, (Oxford University Press: New York, 1992).Google Scholar
[42]Pollock, H. M., J. Phys. D: Appl. Phys., 11, 39 (1978).Google Scholar
[43]Fuller, K. N. G. and Tabor, D., Proc. R. Soc. A, 345, 327 (1975).Google Scholar
[44]Maugis, D., J. Adhesion Sci. Tech., 10, 161 (1996).Google Scholar
[45]Greenwood, J. A., Proc. R. Soc. A, 453, 1277 (1997).Google Scholar
[46]Israelachvili, J. N., Intermolecular and Surface Forces, 1 st Ed. (Acad. Press: London, 1985).Google Scholar
[47]Corcoran, S. G., Brankovic, S. R., Dimitrov, N. and Sieradzki, K., in Thin Films: Stresses & Mechanical Properties VII, edited by Cammarat, R. C., et al (Mater. Res. Soc. Symp. Proc. 505, 1998).Google Scholar
[48]Weihs, T. P., Mann, A. B. and Searson, P. C., US patent application, submitted Nov. 1997.Google Scholar