Skip to main content Accessibility help
×
Home

The Relationship between InGaAs Channel Layer Thickness and Device Performance in High Electron Mobility Transistors

  • M. Meshkinpour (a1), M. S. Goorsky (a1), D. C. Streit (a2), T. Block (a2), M. Wojtowicz (a2), K. Rammohan (a3) and D. H. Rich (a3)...

Abstract

The performance of InGaAs/GaAs pseudomorphic high electron mobility transistors is anticipated to improve with increased channel thickness due to reduced effects of quantum confinement. However, greater channel thicknesses increase the probability of forming misfit dislocations which have been reported to impair device properties. We characterized the composition and thickness of the active layer in Al0.25Ga0.75As / In0.21Ga0.79As structures with different channel thicknesses (75 Å - 300 Å) to within ± 0.005 and ± 8 Å using high resolution x-ray techniques. We determined, using Hall and rf measurements, that the device properties of these structures improved with increasing thickness up to about 185-205 Å; degraded properties were observed for thicker channel layers. Cathodoluminescence results indicate that the mosaic spread observed in x-ray triple axis rocking curves of these device structures is due to the presence of misfit dislocations. Thus, even though misfit dislocations are present, the device structure performs best with a channel thickness of ∼185 Å. These results demonstrate that one can fabricate functional devices in excess of critical thickness considerations, and that these x-ray techniques provide an effective means to evaluate structural properties prior to device processing.

Copyright

References

Hide All
1 Streit, D.C., Tan, K.L., Dia, R.M., Liu, J.K., Han, A.C. and Velebir, J.R., IEEE Elec. Dev. Lett. 12, 149 (1991).
2. Tan, K.L., Dia, R.M., Streit, D.C., Shaw, L.K., Han, A.C., Sholley, M.D., Liu, P.H., Trinh, T.Q., Lin, T., Yen, H.C., IEEE Elec. Dev. Lett. 12, 23 (1991).
3. Nguyen, L.D., Radulescu, D.C., Foisy, M.C., Tasker, P.J. and Eastman, L.F., IEEE Trans. Elec. Dev. 36, 833 (1989).
4. Fischer-Colbrie, A. Miller, J.N., Laderman, S.S., Rosner, S.J. and Hull, R., J. Vac. Sci. Technol., B 6 620 (1988).
5. Moll, N., Hueschen, M.R. and Fischer-Colbrie, A., IEEE Trans. Elec. Dev. 35, 878 (1988).
6. Matthews, J.W. and Blakeslee, A.E., J. Crys. Growth 27, 118 (1974).
7. Schweizer, T., Kohler, K., Rothemund, W. and Ganser, P., Appl. Phys. Lett. 59, 2736 (1991).
8. Bede Scientific Instruments Ltd, Lindsey Park, Bowburn, Durham DH6 5PF, U. K.
9.RADS Rocking Curve Analysis by Dynamical Simulation, Bede Scientific Instruments Ltd.. UK (1992).
10. Meshkinpour, M., Goorsky, M.S., Matney, K., Streit, D.C. and Block, T., J. Appl. Phys., submitted.
11. Green, G.S., Tanner, B.K., Barnett, S.J., Emery, M.T., Pitt, A.D., Whitehouse, C.R. and Clark, G.F., Philos. Mag. Lett. 62, 131 (1990).
12. Rich, D.H., Rammohan, K., Tang, Y., Lin, H.T., Maserjian, J., Grunthaner, F.J., Larsson, A. and Borenstain, S.I., Appl. Phys. Lett. 64, 1 (1994).
13. Fewster, P.F. and Curling, C.J., J. Appl. Phys. 62, 4154 (1987).
14. Wie, C.R., J. Appl. Phys. 66, 985 (1989).
15. Stiffler, S.R., Comfort, J.H., Stanis, C.L., Harame, D.L., Fresart, E. de and Meyerson, B.S., J. Appl. Phys. 70, 1416 (1991).
16. Streit, D.C. et al., to be submitted.
17. Tanner, B.K. and Bowen, D.K., J. Crys. Growth 126, 1 (1993).
18. Watson, G.P., Ast, D.G., Anderson, T.J., Pathangey, B. and Hayakawa, Y., J. Appl. Phys. 71, 3399 (1992).

Related content

Powered by UNSILO

The Relationship between InGaAs Channel Layer Thickness and Device Performance in High Electron Mobility Transistors

  • M. Meshkinpour (a1), M. S. Goorsky (a1), D. C. Streit (a2), T. Block (a2), M. Wojtowicz (a2), K. Rammohan (a3) and D. H. Rich (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.