Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T03:13:20.021Z Has data issue: false hasContentIssue false

Relationship Between Dip-Coating Fabrication Parameters and the Elastic Properties of Rubber Latex Prosthesis

Published online by Cambridge University Press:  17 March 2011

W.F.P. Neves-Junior
Affiliation:
Departamento de Física e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
T. C. dos Santos
Affiliation:
Departamento de Física e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
M. Ferreira
Affiliation:
Departamento de Física e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
M. Mulato
Affiliation:
Departamento de Física e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
J. Coutinho-Netto
Affiliation:
Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
Get access

Abstract

In the present work we are mainly interested in the use of the natural latex extract from the Hevea brasiliensis for medical applications. This presentation focuses on the influence of the fabrication parameters on the final elastic properties of the tubes obtained by dip-coating. The elastic properties of the prosthesis were investigated using tension-deformation experiments. The influence of important fabrication parameters were studied, such as: dip-coating velocity, final prosthesis thickness (which was varied as a function of the number of baths), and thermal treatment. Single and cycled tension-deformation experiments were performed with closed and opened samples considering longitudinal and axial directions. A model is proposed for the anisotropy of the elastic behavior, which involves the sulfur bonds between polymeric chains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Othman, A. B., Hepburn, C. and Hasma, H., Plastics Rubber and Composites Processing Applications v. 19, p.185194, (1993).Google Scholar
2. F. Mrué, PhD Thesis, Departamento de Cirurgia e Anatomia, FMRP-USP, (2000).Google Scholar
3. Alves, M. C. O., Master Thesis, Departamento de Física e Matemática, FFCLRP – USP, (2003).Google Scholar
4. Frade, M. A. C., Valverde, R. V., Assis, R. V. C. de, Coutinho-Netto, J., and N. Foss, T., Int. J. Dermatol. 40(3), 238240, (2001).Google Scholar
5. Doi, K. and Matsuda, T., J. Biomedical Materials Research 37 (4): 573584, (1997).Google Scholar
6. Nakayama, Y. and Matsuda, T., J. Biomedical Material Research 31, 235242, (1996).Google Scholar
7. Doi, K., Nakayama, Y. and Matsuda, T., J. Biomedical Material Research 31, 2733, (1996).Google Scholar
8. Fischer, E. K. and Lindsley, C. H., Textile Research Journal 18 (6): 325337, (1948).Google Scholar
9. Barnes, H. A., Hutton, J. F. and Walters, K., An introduction to rheology - Elsevier Science Publishers, Amsterdam, (1989).Google Scholar
10. Landau, L., and Levich, B., Acta Physicochim; 17:4254, (1942).Google Scholar