Skip to main content Accessibility help
×
Home

Relating Nanostructures to Mechanical Properties in Ion-Implanted Materials

  • David M. Follstaedt (a1), James A. Knapp (a1), Samuel M. Myers (a1) and Gary A. Petersen (a1)

Abstract

Ion implantation was used to form high densities (~1019 /cm3) of small oxide precipitates in Ni in order to investigate the strength mechanism produced by such highly refined structures. Nanometer-size precipitates of Al2O3 and NiO are found to block dislocation motion in the Ni matrix, producing yield strengths up to 4.6 GPa, more than twice that of hardened bearing steel. Dispersion strengthening theory, developed for micrometer-size precipitates and spacings, was found to account quantitatively for the yield strengths produced by nanometer-size oxides as well. Nanoindentation plus finite-element modeling was used to quantify the mechanical properties of implanted metal layers, and was extended to examination of amorphous Si layers formed by self-ion implantation. The amorphous phase was found to have a yield strength of 4.45 ± 0.20 GPa, Young's modulus of 144 ± 7 GPa, and hardness of 10.3 ± 0.4 GPa. The modulus and hardness are reduced by 10% and 15%, respectively, from those of crystalline Si.

Copyright

References

Hide All
1. Orowan, E., Symp. Internal Stresses in Metals and Alloys (Inst. of Metals, London, 1948) p.451.
2. Hall, E.O., Proc. Phys. Soc. London B 64, 747 (1951).
3. Petch, N.J., J. Iron Steel Inst. 174, 25 (1953).
4. Clemens, B.M., Kung, H. and Barnett, S.A., MRS Bulletin 24, 20 (1999).
5. Sniegowski, J.J. and Boer, M.P. de, Annu. Rev. Mater. Sci. 30, 299 (2000).
6. Guckel, H., Skrobis, K.J., Klein, J. and Christenson, T.R., J. Vac. Sci. Technol. A 12, 2559 (1994).
7. Knapp, J.A., S.M. Myers, Follstaedt, D.M. and Petersen, G.A., J. Appl. Phys. 86, 6547 (1999).
8. Myers, S.M., Knapp, J.A., Follstaedt, D.M. and Dugger, M.T., J. Appl. Phys. 83, 1256 (1998).
9. Knapp, J.A., D.M. Follstaedt, Myers, S.M., Barbour, J.C. and Friedmann, T.A., J. Appl. Phys. 85, 1460 (1999).
10. Embury, J. D., Metall. Trans. A 16, 2191 (1985).
11. Hirsch, P. B. and Humphreys, F. J., Proc. Royal Soc. London, Ser. A 318, 45 (1970).
12. Bourcier, R. J., Myers, S. M. and Polonis, D. H., Nucl. Inst. Meth. B 44, 278 (1990).
13. Follstaedt, D. M., Myers, S. M., Bourcier, R. J. and Dugger, M. T., in “Proc. Intl. Conf. on Beam Processing of Advanced Materials” (1992), eds. Singh, J. and Copley, S. M. (TMS, Warrendale, PA, 1993) p. 507.
14. Powder Diffraction File, International Center for Diffraction Data, Newton Square, PA.
15.ABAQUS version 5.8, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.
16. Hirth, J.P. and Lothe, J., Theory of Dislocations (Krieger, Malabar, FL, 1992), pp. 426-428, 836.
17. Ohdomori, I., Kakumu, M., Sugahara, H., Mori, M., Saito, T., Yonehara, T. and Hajimoto, Y., J. Appl. Phys. 52, 6617 (1981).
18. Williamson, D.L., Roorda, S., Chicoine, M., Tabti, R., Stolk, P.A., Acco, S. and Saris, F.W., Appl. Phys. Lett. 67, 226 (1995).
19. Custer, J.S., Thompson, Michael O., Jacobson, D.C., Poate, J.M., Roorda, S., Sinke, W.C. and Spaepen, F., Appl. Phys. Lett. 64, 437 (1994).
20. Burnett, P.J. and Briggs, G.A.D., J. Mater. Sci. 21, 1828 (1986).
21. Bhadra, R., Pearson, J., Okamoto, P., Rehn, L. and Grimsditch, M., Phys. Rev. B 38, 12 656 (1988).
22. Szabadi, M., Hess, P., Kellock, A.J., Coufal, H. and Baglin, J.E.E., Phys. Rev. B 58, 8941 (1998).
23. Volkert, C.A., J. Appl. Phys. 74, 7107 (1993).
24. Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F. and Hockey, B.J., Phys. Rev. Lett. 60, 2156 (1988).
25. Pharr, G.M., Mat. Res. Soc. Symp. Proc. 239, 301 (1992).
26. Weppelmann, E.R., Field, J.S. and Swain, M.V., J. Mater. Res. 8, 830 (1993).
27. Mann, A.B., Heerden, D. van, Pethica, J.B. and Weihs, T.P., J. Mater. Res. 15, 1754 (2000).
28. Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).
29.TRIM-90, provided by Ziegler, J., private communication.
30. Knapp, J.A., Follstaedt, D.M., Petersen, G.A. and Myers, S.M., Mat. Res. Soc. Symp. Proc. 559 (Symp. Q, Fall 2000), to be published.
31. Pharr, G.M. and Nastasi, M., private communication.
32. Knapp, J.A., Follstaedt, D.M., Banks, J.C. and Myers, S.M.,. Mat. Res. Soc. Symp. Proc. 594, 69 (2000).
33. Myers, S.M., Knapp, J.A., Follstaedt, D.M. and Dugger, M.T., J. Appl. Phys. 83, 1256 (1998).
34. Friedmann, T.A., Sullivan, J.P., Knapp, J.A., Follstaedt, D.M., Medlin, D.L. and Mirkarimi, P.B., Appl. Phys. Lett. 71, 3820 (1997).
35. Barrett, C.R., Nix, W.D. and Tetelman, A.S, The Principles of Engineering Materials (Prentice-Hall, Englewood Cliffs, NJ, 1973) pp. 225229.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed