Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T21:57:08.696Z Has data issue: false hasContentIssue false

Refractive Index Measurements and New Sellmeir Coefficients of Zinc Germanium Phosphide From 2-9 Microns With Implications for Phase Matching in Optical Parametric Oscillators

Published online by Cambridge University Press:  10 February 2011

David E. Zelmon
Affiliation:
Air Force Research Laboratory, Materials Directorate, AFRL/MLPO, 3005 P St. Wright-Patterson AFB, OH 45433-7707
Elizabeth A. Hanning
Affiliation:
Air Force Research Laboratory, Materials Directorate, AFRL/MLPO, 3005 P St. Wright-Patterson AFB, OH 45433-7707
Peter Schunemann
Affiliation:
Sanders, A Lockheed Martin Company, MER 15-1813, PO Box 868 Nashua, NH 03061-0868
Get access

Abstract

Recent experiments in mid IR frequency conversion have revealed that older Sellmeir models for zinc germanium phosphide are inadequate. Erroneous predictions in phase matching angles based on older refractive index data have resulted in compromised device performance. We have conducted a complete study of the refractive indices of zinc germanium phosphide from 2 to 9 microns and calculated new Sellmeir coefficients. We have used these to explain the results of recent experiments with mid IR optical parametric oscillators. The phase matching calculations based on our new refractive index data predict much more closely the results of several different mid IR frequency conversion experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barnes, N. P., Murray, K. E., Jani, M. G., Schunemann, P. G., and Pollak, T. M., J. Optical Society of America, B15, p232–8 (1998)Google Scholar
2. Budni, P. A., Ezzo, K., Schunemann, P.G., Knights, M. G., Minnigh, S., McCarthy, J. C., and Pollak, T. M., Optical Soc. of Amer. Proc. on Adv. Sol. St. Lasers, v10, p335–8, Mar. 18-20, 1991 Google Scholar
3. Allik, T. H., Chandra, S., Schunemann, P. G., Ketteridge, P. A., Lee, I., Pollak, T.M., and Chicklis, E. P., OSA Trends in Optics and Photonics v19, p 230–2, Adv. Sol St. Lasers, Bosenburg, W.R. and Fejer, M. M. eds., Optical Society of America, Washington DC (1998)Google Scholar
4. Mason, P. D., Jackson, D. J., and Gorton, E. K., Opt. Comm., 110, 163-166 (1994)Google Scholar
5. LaRocca, A. J., Atmospheric Absorption, in The Infrared Handbook, ed. by Wolfe, W.L and Zissis, G. J., (Off. of Naval Res., 1978) Chapter 5Google Scholar
6. Born, M. and Wolf, E., Principles of Optics, 6th ed., Pergamon Press, New York, 1980 p179 Google Scholar
7. Boyd, G. D., Buehler, E., and Storz, F. G., Appl. Phys. Lett., 18, 301–4 (1971)Google Scholar
8. Fischer, D. W., Ohmer, M. C., Schunemann, P. G., and Pollak, T. M., J. Appl. Phys., 77, 5942–5 (1995)Google Scholar
9. Bhar, G. C. and Ghosh, G., J. Optical Society of America, v69, p730–3 (1979)Google Scholar
10. Andreev, Y. M., Voevodin, V. G., Gribenyukov, A. I., Zyranov, O. Ya., Ippolitov, I. I., Morozov, A. N., Sosnin, A. V., and nitskii, G. S Khemi, Sov. J. Quantum Elec., 14, 10211022 (1984)Google Scholar
11. Andreev, Y. M., Bykanov, An. N., Gribenyukov, A. I., Zuev, V. V., Karyshev, V. D., Lisletsov, A. V., Kovalev, I. O., Konov, V. I., Kuz, G. P. min, Nesterenko, A. A., Osorgin, A. E., Stardumov, Yu. M., and Chapliev, N. I., Sov. J. Quantum Elec., 20, 410–14 (1990)Google Scholar
12. Abdullaev, G. B., Allakhverdiev, K. R., Karasev, M. E., Konov, V. I., Kulevskii, L. A, Mustafaev, N. B., Pashinin, P. P., Prokhorov, A. M., Starodumov, Yu. M., and Chapliev, N.I., Soy. J. Quantum Elec., 19, 494498 (1989)Google Scholar
13. Kato, K., Applied Optics, 36, 2506–30 (1997)Google Scholar