Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-03T04:21:40.336Z Has data issue: false hasContentIssue false

Reflectance spectroscopy of single photonic crystal island fabricated by ink-jet printing

Published online by Cambridge University Press:  26 February 2011

Dake Wang
Affiliation:
wangda1@auburn.edu, Auburn University, Laboratory for Nanophotonics and Department of Physics, United States
Minseo Park
Affiliation:
park@physics.auburn.edu, Auburn University, Laboratory for Nanophotonics and Department of Physics, United States
Jungho Park
Affiliation:
jmoon@yonsei.ac.kr, Yonsei University, School of Advanced Materials Engineering, Korea, Republic of
Jooho Moon
Affiliation:
jmoon@yonsei.ac.kr, Yonsei University, School of Advanced Materials Engineering, Korea, Republic of
Get access

Abstract

A micro-reflectance spectroscopy was performed on a single island of photonic crystal array. An array of islands of photonic crystal with colloidal polystyrene beads was assembled on Si using ink-jet printing. The polystyrene colloids with three different sizes (190 nm, 210 nm, and 270 nm in diameter) were used and the polystyrene colloidal particles were self-assembled to form fcc lattices with three different lattice spacing. It was observed from the reflectance spectra that the position of the optical stop band shifts as the size of the colloidal particle changes. Effective medium approximations were used to model the dielectric properties of the colloid/air composite. The theoretically expected reflectance peak position agrees well with those of the experimentally observed peaks. The effect of finite size of the photonic crystal island on its reflectance spectroscopy was investigated by comparing the reflectance spectra collected from four different photonic crystal islands assembled from the same polystyrene colloidal particles, but with different lateral size for each island. It was found that the primary reflection peak was broadened and its intensity was reduced when the lateral size of the island was decreased.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yablonovitch, E., Leung, K. M., Nature 351, 278 (1991).Google Scholar
2 Fleming, J. G., Lin, S. Y., Optics Letters 24, 49 (1999).Google Scholar
3 Krauss, T. F., DelaRue, R. M., Brand, S., Nature 383, 699 (1996).Google Scholar
4 Gruning, U., Lehmann, V., Ottow, S., Busch, K., Appl. Phys. Lett. 68, 747 (1996).Google Scholar
5 Lau, H. W., Parker, G. J., Greef, R., Holling, M., Appl. Phys. Lett. 67, 1877(1995).Google Scholar
6 Zengerle, R., Journal of Modern Optics 34, 1589 (1987).Google Scholar
7 Blanco, A., Lopez, C., Mayoral, R., Miguez, H., Meseguer, F., Mifsud, A., Herrero, J., Appl. Phys. Lett. 73, 1781 (1998).Google Scholar
8 Amos, R. M., Rarity, J. G., Tapster, P. R., Shepherd, T. J., Phys. Rev. E 61, 2929 (1999).Google Scholar
9 Wong, S., Kitaev, V., Ozin, G. A., J. Am. Chem. Soc. 125, 15589 (2003).Google Scholar
10 Miguez, H., Yang, S. M., Ozin, G. A., Appl. Phys. Lett. 81, 2493(2002).Google Scholar
11 Vlasov, Y. A., Bo, X. Z., Sturm, J. C., Norris, D. J., Nature (London) 414, 289 (2001).Google Scholar
12 Dimitrov, A. S., Nagayama, K., Langmuir 12, 1303(1996).Google Scholar
13 Aizenberg, J., Braun, P. V., Wilzius, P., Phys. Rev. Lett. 27, 2997 (2000).Google Scholar
14 Ye, Y.H., Badilescu, S., Truong, V.V., Appl. Phys. Lett. 79, 872 (2001).Google Scholar
15 Chen, K. M., Jiang, X., Kimerling, L. C., Hammond, P. T., Langmuir 16, 7825 (2000).Google Scholar
16 Yin, Y., Li, Z.Y., Xia, Y, Langmuir 19, 622 (2003).Google Scholar
17 Ko, H.Y., Park, J., Shin, H., Moon, J., Chem. Mater. 16, 4212 (2004).Google Scholar
18 Wang, D., Park, M., Park, J., Moon, J., Appl. Phys. Lett. 86, 241114 (2005).Google Scholar
19 Patrini, M., Galli, M., Belotti, M., Andreani, L., and Guizzetti, G., J. Appl. Phys. 92, 1816 (2002).Google Scholar
20 Haurylau, M., Weiss, S. M., and Fauchet, P. M., Proc. of SPIE 5511, 38 (2004).Google Scholar
21 Qiu, M., Appl. Phys. Lett. 81, 1163 (2002).Google Scholar
22 Vos, W. L., Sprik, R., Blaaderen, A. V., Imhof, A., Lagendijk, A., Wegdam, G. H., Phys. Rev. B. 53, 16231 (1996).Google Scholar
23 Psarobas, I. E., Opt. Comm. 162, 21 (1999).Google Scholar
24 Shung, K. W. K., Tsai, Y. C., Phys. Rev. B 48, 11265 (1993).Google Scholar
25 Mittleman, D. M., Bertone, J. F., Jiang, P., Hwang, K. S., Colvin, V. L., J. Chem. Phys. 111, 345 (1999). 0901-Ra16-10-Rb16-10.6Google Scholar