Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-22T23:22:04.357Z Has data issue: false hasContentIssue false

Red shifted-Photoluminescence of Ensembles of GaN Nano-Crystallites

Published online by Cambridge University Press:  15 February 2011

Leah Bergman
Affiliation:
Department of Physics, University of IdahoMoscow, ID 83844-0903, Lbergman@uidaho.edu
Xiang-Bai Chen
Affiliation:
Department of Physics, University of IdahoMoscow, ID 83844-0903, Lbergman@uidaho.edu
Joel Feldmeier
Affiliation:
Department of Physics, University of IdahoMoscow, ID 83844-0903, Lbergman@uidaho.edu
Andrew P. Purdy
Affiliation:
Naval Research Laboratory, Chemistry Division, Washington, DC Fran Adar, Emmanuel Leroy, JYHoriba Group, Edison, NJ
Get access

Abstract

We present optical analysis concerning the redshift of the photoluminescence (PL) of ensembles of GaN nano-crystals. We found that the extent of the redshift depends on the laser power as well as on the ensemble size. For ensemble of size ∼ 30 μm, the laser power in our experimental specification impacted the PL energy and caused a redshift of up to 120 meV. This phenomena was not observed for a small ensemble of ∼ 1 νm or less. For the small ensemble the PL redshift was negligible and depended weakly on the laser power; similar behavior was found in GaN thin film. The above findings were observed in the PL of GaN nano-crystalline of Wurtzite as well as cubic structure. Our results point to a laser heating event occurring in the large ensemble; the emitted and scattered light is confined among the nano-crystallites thus causing the heating. For a small ensemble the light has a higher probability of diffusing outside the enclosure, and thus no laser heating occurs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Articles within “Gallium Nitride II” Semiconductors and Semimetals vol. 57. Editors Pankove, J. I. and Moustakas, T.D.. (Academic Press Limitted, San Diego, 1999).Google Scholar
2. Bergman, L., Dutta, M., and Nemanich, R.J., In “Raman Scattering in Materials Science”, P 273, Ed. Merlin, R. and Weber, W.H. (Springer, New York, 2000).Google Scholar
3. Purdy, A.P., Case, S., and Muratore, N., J. Cryst. Growth 252, 136 (2003).Google Scholar
4. Bergman, L., Chen, X.B, Feldmeier, J., Purday, A., Submitted to APL 2003.Google Scholar
5. Han, W.Q., and Zettl, A., Appl. Phys. Lett. 81, 5051 (2002).Google Scholar
6. Lee, M.W., Twu, H.Z., Chen, C.C., and Chen, C.H., Appl. Phys. Lett. 79, 3693 (2001).Google Scholar
7. Kim, H.M., Kim, D.S., Kim, D.Y., Kang, T.W., Cho, Y.H., and Chung, K.S., Appl. Phys. Lett. 81, 2193 (2002).Google Scholar
8. Li, H.D., Zhang, S.L., Yang, H.B., Zou, G.T., Yang, Y.Y., Yue, K.T., Wu, X.H., and Yan, Y., J. Appl. Phys. 91, 4562 (2002).Google Scholar
9. Yang, Y., Leppert, V.J., Risbud, S.H., Twamly, B., Power, P.P., and Lee, H.W.H., Appl. Phys. Lett. 74, 2262 (1999).Google Scholar
10. Zhang, J., Zhang, L.D., Wang, X.F., Liang, C.H., Peng, X.S., and Wang, Y.W., J. Chem. Phys. 115, 5714 (2001).Google Scholar
11. Duan, X., and Lieber, C.M., J. Am. Chem. Soc. 122, 188 (2000).Google Scholar
12. Seo, H.W., Bae, S.Y., Park, J., Yang, H., Park, K.S., and Kim, S., J. Chem. Phys. 116, 9492 (2002).Google Scholar
13. Han, W., Redlich, P., Ernst, F., and Ruhle, M., Appl. Phys. Lett. 76, 652 (2000).Google Scholar
14. He, M., Minus, I., Zhou, P., Mohammed, N., Jacobs, R., Sarney, W.L., Riba, L.S., and Vispute, R.D., Appl. Phys. Lett. 77, 3731 (2000).Google Scholar
15. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B56, R10024 (1997).Google Scholar
16. Cingolani, R., Botchkarev, A., Tang, H., Morkoc, H., Traetta, G., Coli, G., Lomascolo, M., Carlo, A.D., Sala, F. D., and Lugli, P., Phys. Rev B61, 2711 (2000).Google Scholar
17. Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., and Yamada, N., Appl. Phys. Lett. 73, 1691 (1998).Google Scholar
18. Kim, H.S., Lin, J.Y., Jiang, H.X., Chow, W.W., Botchkarev, A., and Morkoc, H., Appl. Phys. Lett. 73, 3426 (1998).Google Scholar
19. Vina, L., Logothetidis, S., and Cardona, M., Phys. Rev. B30, 1979 (1984).Google Scholar
20. Bergman, L., Dutta, M., Stroscio, M.A., Komirenko, S.M., Nemanich, R.J., Eiting, C.J., Lambert, D.J.H., Kwon, H.K., and Dupuis, R.D., Appl. Phys. Lett. 76, 1969 (2000).Google Scholar
21. Gilbert, D., Novikov, A., Patrin, N., Budai, J.S., Kelly, F., Chodelka, R., Abbaschian, R., Pearton, S.J., and Singh, R.. Appl. Phys. Lett. 77, 4172 (2000)Google Scholar