Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T21:47:52.350Z Has data issue: false hasContentIssue false

Recombination at Heterojunction Interfaces

Published online by Cambridge University Press:  22 February 2011

M. Müllenborn
Affiliation:
Department of Materials Science & Engineering, University of California at Los Angeles, Los Angeles, CA 90024
N. M. Haegel
Affiliation:
Department of Materials Science & Engineering, University of California at Los Angeles, Los Angeles, CA 90024
Get access

Abstract

Generation and recombination mechanisms at heterojunction interfaces are quantitatively discussed for lattice-matched (AlGaAs/GaAs) and lattice-mismatched (InGaAs/InP) systems. The effect of increased interface recombination on photon recycling and carrier diffusion through the interface region are estimated through a calculation based on the ambipolar diffusion equation. Experimental photoluminescence power dependencies, revealing information about generation and recombination mechanisms, fit well with calculated photoluminescence intensities. Lifetimes and interface extent can be determined by these fits.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bode, M. H. and Ourmazd, A., J. Vac. Sci. Technol. B 10, 1787 (1992).Google Scholar
2. Bimberg, D., Heinrichsdorff, F., Bauer, R. K., Gerthsen, D., Stenkamp, D., Mars, D. E., and Miller, J. N., J. Vac. Sci. Technol. B 10, 1793 (1992).Google Scholar
3. Salemink, H. W. M. and Albrektsen, O., J. Vac. Sci. Technol. B 10, 1799 (1992).Google Scholar
4. Ahrenkiel, R. K., Keyes, B. M., and Dunlavy, D. J., J. Appl. Phys. 70, 225 (1991).Google Scholar
5. Renaud, Ph., Raymond, F., Bensaid, B., and Vérié, C., J. Appl. Phys. 71, 1907 (1992).Google Scholar
6. Mullenborn, M. and Haegel, N. M. in Advanced III-V Compound Semiconductor Growth, Processing and Devices, edited by Pearton, S. J., Sadana, D. K., and Zavada, J. M. (Mater. Res. Soc. Proc. 240, Pittsburgh, PA, 1991) pp. 9398.Google Scholar
7. Bradshaw, J. L., Choyke, W. J., Devaty, R. P., and Messham, R. L., J. Appl. Phys. 67, 1483 (1990).Google Scholar
8. Miullenborn, M. and Haegel, N. M., submitted to J. Appl. Phys. in Dec. 92.Google Scholar