Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T02:38:49.628Z Has data issue: false hasContentIssue false

Recent Advances in the Synthesis of Polyfluorenes as Organic Semiconductors

Published online by Cambridge University Press:  17 March 2011

David J. Brennan
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Yu Chen
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Shaoguang Feng
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
James P. Godschalx
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Gary E. Spilman
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Paul H. Townsend
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Scott R. Kisting
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Mitchell G. Dibbs
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Jeff M. Shaw
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Dean M. Welsh
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Jessica L. Miklovich
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Debra Stutts
Affiliation:
The Dow Chemical Company, Midland, Michigan, USA, 48674
Get access

Abstract

New poly(fluorene-thiophene) alternating copolymers are described in which either the dioctylfluorene or bithiophene units in poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) are replaced by other fluorene or thiophene-based groups, respectively. Improvements in solubility are realized when the bithiophene unit of F8T2 is replaced by dihexylterthiophene or dihexylpentathiophene units. Melting temperatures are also lowered by 50 – 100°C in these polymers when compared to F8T2. Replacement of the bithiophene unit of F8T2 with a dihexylpentathiophene unit also results in a significant improvement in hysteresis (< 2 V vs. 3.5 – 5 V for F8T2). Initial results are also reported on the thermal cleavage of the C8 side groups of F8T2, which yields an insoluble polymeric semiconductor film that continues to exhibit transistor switching characteristics as part of a bottom gate device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bernius, M. T., Inbasekaran, M., O'Brien, J., Wu, W., Adv. Mater. 12, 1737 (2000).Google Scholar
2. Leclerc, M., J. Polym. Sci: Pt A: Polym. Chem., 39, 2867 (2001).Google Scholar
3. Inbasekaran, M., Wu, W., and Woo, E. P., U.S. Patent No. 5 777 070 (7 July 1998).Google Scholar
4. Bernius, M. T. and Woo, E. P., U.S. Patent No. 6 204 515 B1 (20 March 2001).Google Scholar
5. Townsend, P. H., Dibbs, M., Brennan, D., Welsh, D., Shaw, J. “Polymeric Semiconductor Development for Thin Film Transistors,” Proceedings of the International PolyScene- Workshop on Polymer Electronics, Munich, Germany, November, 2002, p. 9.Google Scholar
6. Sirringhaus, H., Wilson, R. J., Friend, R. H., Inbasekaran, M., Wu, W., Woo, E. P., Grell, M., Bradley, D. D. C., Appl. Phys. Lett., 77, 406 (2000).Google Scholar
7. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E. P., Science, 290, 2123 (2000).Google Scholar
8. Brennan, D. J., Townsend, P. H., Welsh, D. M., Dibbs, M. G., Shaw, J. M., Miklovich, J. M., and Boeke, R. B. in Organic and Polymeric Materials and Devices, edited by Blom, P. W. M., Greenham, N. C., Dimitrakopoulos, C. D., and Frisbie, C. D., (Mat. Res. Soc. Proc. 771 Pittsburgh, PA, 2003), pp. 157162.Google Scholar
9. Brennan, D. J., Townsend, P. H., Welsh, D. M., Dibbs, M. G., Shaw, J. M., Miklovich, J. M., Boeke, R. B., Arias, A. C., Creswell, L., MacKenzie, J. D., Ramsdale, C., Menon, A., and Sirringhaus, H. in Organic Field Effect Transistors II, edited by Dimitrakopoulos, C. D. and Dodabalapur, A., (Proc. SPIE 5217, Bellingham, WA, 2003) pp. 16.Google Scholar
10. Street, R. A., Salleo, A., and Chabinyc, M. L., Phys. Rev. B. 68, 085316-1 (2003).Google Scholar
11. Salleo, A. and Street, R. A., J. Appl. Phys. 94, 471 (2003).Google Scholar
12. Martin, S., Dassas, L., Hamilton, M. C., and Kanicki, J. in Organic Field Effect Transistors II, edited by Dimitrakopoulos, C. D. and Dodabalapur, A., (Proc. SPIE 5217, Bellingham, WA, 2003) pp. 715.Google Scholar
13. Newsome, C. J., Kawase, T., Shimoda, T., and Brennan, D. J. in Organic Field Effect Transistors II, edited by Dimitrakopoulos, C. D. and Dodabalapur, A., (Proc. SPIE 5217, Bellingham, WA, 2003) pp. 1624.Google Scholar
14. Kinder, L., Kanicki, J., Swensen, J., and Petroff, P. in Organic Field Effect Transistors II, edited by Dimitrakopoulos, C. D. and Dodabalapur, A., (Proc. SPIE 5217, Bellingham, WA, 2003) pp. 3542.Google Scholar
15. Veres, J., Ogier, S. D., Leeming, S. W., Cupertino, D. C., and Khaffaf, S. M., Adv. Funct. Mater. 13, 199 (2003).Google Scholar
16. Swensen, J., Kanicki, J., and Heeger, A. J. in Organic Field Effect Transistors II, edited by Dimitrakopoulos, C. D. and Dodabalapur, A., (Proc. SPIE 5217, Bellingham, WA, 2003) pp. 159165.Google Scholar
17. Rawcliffe, R., Bradley, D.D.C., and Campbell, A. J. in Organic Field Effect Transistors II, edited by Dimitrakopoulos, C. D. and Dodabalapur, A., (Proc. SPIE 5217, Bellingham, WA, 2003) pp. 2534.Google Scholar
18. Paul, K. E., Wong, W. S., Ready, S. E., and Street, R. A., Appl. Phys. Lett. 83, 2070 (2003).Google Scholar
19. Stutzmann, N., Friend, R. H., and Sirringhaus, H., Science 299, 1881 (2003).Google Scholar
20. Chabinyc, M. L., Wong, W. S., Paul, K. E., and Street, R. A., Adv. Mater. 15, 1903 (2003).Google Scholar
21. Hamilton, M. C., Martin, S., and Kanicki, J. in Organic Field Effect Transistors II, edited by Dimitrakopoulos, C. D. and Dodabalapur, A., (Proc. SPIE 5217, Bellingham, WA, 2003) pp. 193201.Google Scholar
22. Attempts to prepare F6T2 polyfluorene (2e, Table 1) under these conditions were unsuccessful due to the insoluble nature of this polymer.Google Scholar
23. Details relating to the synthesis of the dibromoalkylter- and pentathiophene species described in this paper will be presented at a later date.Google Scholar
24. The unusually high levels of residual bromine in polymers 6 – 8 may be a result of in- complete polymer endcapping reactions of the bromine end groups with phenylboronic acid.Google Scholar
25. Bredas, J. L., Silbey, R., Boudreaux, D. S., Chance, R. R., J. Am. Chem. Soc. 105, 6555 (1983).Google Scholar
26. Analysis of residual inorganic species as determined by neutron activation analysis (NAA): Cl – 61 ppm, Na – 31 ppm, Br – 6.6 ppm, K – ND@1 ppm, Pd – 1.2 ppm.Google Scholar
27. Dissolution of polymer 9 in these solvents required a short initial heating at 50 – 60°C.Google Scholar
28. Janietz, S., Bradley, D. D. C., Grell, M., Giebeler, C., Inbasekaran, M., Woo, E. P., App. Phys. Lett, 73, 2453 (1998).Google Scholar
29. Cao, J., Kampf, J. W., and Curtis, M. D., Chem. Mater. 15, 404 (2003).Google Scholar
30. The use of thermally removable solublizing groups in oligothiophenes has recently been described. See Murphy, A. R.; Fréchet, J. M. J., Chang, P., Lee, J., and Subramanian, V., J. Am. Chem. Soc. 126, 1596, (2004).Google Scholar