Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T09:21:32.405Z Has data issue: false hasContentIssue false

Recent Advances in Simulation of Dendritic Polymers

Published online by Cambridge University Press:  10 February 2011

Tahir Çağin
Affiliation:
Materials and Process Simulation Center, 139-74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Paul J. Miklis
Affiliation:
Materials and Process Simulation Center, 139-74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Guofeng Wang
Affiliation:
Materials and Process Simulation Center, 139-74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Georgios Zamanakos
Affiliation:
Materials and Process Simulation Center, 139-74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Ryan Martin
Affiliation:
Materials and Process Simulation Center, 139-74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Hao Li
Affiliation:
Materials and Process Simulation Center, 139-74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Daniel T. Mainz
Affiliation:
Materials and Process Simulation Center, 139-74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Vaidehi Nagarajan
Affiliation:
Materials and Process Simulation Center, 139-74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
William A. Goddard III
Affiliation:
Materials and Process Simulation Center, 139-74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Get access

Abstract

Dendrimers and hyperbranched polymers represent a revolution in methodology for directed synthesis of monodisperse polymers with enormous possibility of novel architectures. They demonstrate ability to attain micelle-like structures with distinct internal and external character. Furthermore polyfunctional character of dendrimers allows varied response to environment and promise as selective sensors, carrier for drugs, encapsulation of toxic chemicals and metals. One of the key problems are the characterization of the structures. Theory and simulation can be essential to provide and predict structure and properties. Here, we present some recent advances in theory, modeling and simulation of dendritic polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tomalia, D. A., Naylor, A. M., and Goddard, W. A. III, Angew. Chem. 102,119 (1990); Angew. Chem. Intl. Ed. Engl. 29, 138 (1990).Google Scholar
2. Tomalia, D. A., Hedstrand, D. M., and Ferritto, M. S., Macromol. 24, 1435 (1991).Google Scholar
3. Hawker, C. J., Wooley, K. L., Fréchet, J. M. J., J. Chem. Soc. Perkins Trans., 1287 (1993). J. M. J. Fréchet, Science 263, 1710 (1994). J. M. J. Fréchet, Science 269, 1080 (1995).Google Scholar
4. Zimmerman, S. C., Zeng, F., Richert, D. E. C., and Kolotuchin, S. V., Science 271, 10985 (1996).Google Scholar
5. Bell, T. W., Science 271, 1077 (1996).Google Scholar
6. Hest, J. C. M. van, Delnoye, D. A. P., Baars, M. W. P. L., Genderen, M. H. P. van, and Meijer, E. W., Science 268, 1592 (1995). F. G. A. Johan, J. Janson, E. W. Meijer, and E. M. M. de Brabandervan den Berg, J. Am. Chem. Soc. 117, 4417 (1995). F. G. A. Johan, J. Janson, E. M. M. de Brabander-van den Berg, and E. W. Meijer, Science 266, 1266 (1995).Google Scholar
7. Gopidas, K. R.. Leheny, A. R., Caminati, G., Turro, N. J.. and Tomalis, D. A., J. Am. Chem. Soc. 113. 7335 (1991).Google Scholar
8. Goddard, W. A. III. Dunning, T. H. Jr. Hunt, W. J., and Hay, P. J., Accts. Chem. Res. 6, 368 (1973).Google Scholar
9. Tannor, D.J.. Marten, B. Murphy, R., R. A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda, W. A. Goddard III, and B. Honig J. Am. Chem. Soc. 116, 11875 (1994).Google Scholar
10. Greeley, B. H., Russo, T. V., Mainz, D. T., Friesner, R. A., Langlois, J-M., Goddard, W. A. III, Donnelly, R. E., and Ringnalda, M. N., J. Chem. Phys. 101, 4028 (1994). R. A. Friesner, Ann. Rev. Phys. Chem. 42, 341 (1991).Google Scholar
11. Chen, X. J.. Langlois, J-M., and Goddard, W. A., Phys. Rev. B 52, 2348 (1995)Google Scholar
12. Dasgupta, S.. Yamasaki, T.. and Goddard, W. A. III, J. Chem. Phys. 104, 2898 (1996).Google Scholar
13. Karasawa, N., Dasgupta, S., and Goddard, W. A. III, J. Phys. Chem. 95, 2260 (1990). S. Dasgupta, W. B. Hammond, and W. A. Goddard III, J. Am. Chem. Soc., 118, 12291 (1996). N. Karasawa and W. A. Goddard III, Macromolecules 28, 6765 (1995). N. Karasawa and W. A. Goddard III, Macromolecules 25, 7268 (1992). S. Dasgupta, K. A. Brameld, C. F. Fan, and W. A. Goddard III, Spect. Acta. A 53. 1347 (1997). S. Dasgupta, K. A. Smith, and W. A. Goddard III, J. Phys. Chem. 97. 10891 (1993). C. B. Musgrave, S. Dasgupta, and W. A. Goddard III, J. Phys. Chem. 99, 13321 (1995). C. B. Musgrave, S. J. Harris, and W. A. Goddard III, Chem. Phys. Lett. 247, 359 (1995).Google Scholar
14. Mayo, S. L., Olafson, B. D., and Goddard, W. A. III, J. Phys. Chem. 94, 8897 (1990).Google Scholar
15. Rappé, A. K. Casewit, C. J., Colwell, K. S., Goddard, W. A. III, and Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992)Google Scholar
16. Çağin, T. and Ray, J. R., Phys. Rev. A 37, 247 (1988); Phys. Rev. A, 37, 4510 (1988); Phys. Rev. B 37, 699 (1988); Phys. Rev B. 38, 7940 (1988). T. Cagin and B. M. Pettitt, Phys. Rev. B 39, 12484 (1989); Mol. Phys. 72, 111 (1991); Mol. Simul. 5, 1 (1991). T. Cagin, (1993) in “Computer aided innovation of new materials IF, pp 255–259, Eds. M. Doyama, J. Kihara, M. Tanaka, and R. Yamamoto.Google Scholar
17. Karasawa, N. and Goddard, W. A. III, J. Phys. Chem. 93, 7320 (1989). Z. M. Chen, T. Qagin, and W. A. Goddard, III, J. Comp. Chem. 18, 1365 (1997).Google Scholar
18. Lin, K. T., Burnett, S., Iotov, M., McClurg, R. B., Vaidehi, N., Dasgupta, S., Taylor, S., and Goddard, W. A. III, J. Comp. Chem. 18, 501 (1997). K. T. Liin, PhD Thesis, Caltech (1995).Google Scholar
19. Ding, H. Q., Karasawa, N. and Goddard, W. A. III, J. Chem. Phys. 97, 4309 (1992).Google Scholar
20. Ding, H., Karasawa, N., and Goddard, W. A. III, Chem. Phys. Lett. 196, 6 (1992).Google Scholar
21. Çağain, T., Karasawa, N., Dasgupta, S., and Goddard, W. A. III, Mat. Res. Soc. Symp. Proc. 278 (1992). T. Cagin, W. A. Goddard III, and M. L. Ary, Comp. Polymer Sci. 1 (1991) 241.Google Scholar
22. Mathiowetz, A. M., Jain, A., Karasawa, N., and Goddard, W. A. III, Proteins 20, 227 (1994). N. Vaidehi, A. Jain, and W. A. Goddard III, J. Phys. Chem. 100, 10508 (1996).Google Scholar
23. Evans, D. J. and Morriss, G. P., “Statistical Mechanics of Nonequilibrium Liquid,” Academic Press, London, (1990). D. M. Heyes, Comp. Phys. Rep. 8, 71 (1988)Google Scholar
24. Qi, Yue,Çağin, T., Kimura, Y., and Goddard, W. A. III, Phys. Rev. E., submitted. J. Che, T. Çağin, and W. A. Goddard III, Nanotech., submitted. T. Çağin, P. Miklis, and W. A. Goddard III, unpublished.Google Scholar
25. Rappé, A. K., and Goddard, W. A., J. Phys. Chem. 95, 3358 (1991).Google Scholar
26. Ringnalda, M. N., Langlois, J., Greeley, B. H., Murphy, R. B., Russo, T. V., Cortis, C., Muller, R. P., Marten, B., Donnelly, R. E., Mainz, D. T., Wright, J. R., Pollard, W. T., Cao, Y., Won, Y., Miller, G. H., Goddard, W. A. III, and Friesner, R. A., PS-GVB 2.24 from Schrödinger Inc., Portland Oregon, 1996.Google Scholar
27. Cortis, C. M. and Friesner, R. A., J. Comput. Chem. 18, 1570 (1997); 1591 (1997).Google Scholar
28. Still, W. C., Tempczyk, A., Hawley, R. C., and Hendrickson, T. J. Am. Chem. Soc. 113, 6127 (1990).Google Scholar
29. Çağim, T., in Proceedings of MSC Annual Workshop, 1997.Google Scholar
30. Hudson, S. D., Jung, H.T., Percec, V., Cho, W. D., Johansson, G., Ungar, G., Balagurusamy, V. S. K., Science 278, 449 (1997).Google Scholar
31. Gennes, P. G. de, and Hervet, H. J., Phys. Lett. (Paris) 44, 351 (1988).Google Scholar
31. Hudson, S. D., Jung, H. T., Percec, V., Cho, W. D., Johansson, G., Ungar, G., Balagurusamy, V. S. K., Science 278, 449 (1997).Google Scholar
32. This calculation was performed with the Cerius2 program from Molecular Simulation Inc., San Diego, California.Google Scholar
33. Dvornic, P. R., Tomalia, D. A., Current Opinion in Colloid and Interface Science, 1, 221 (1996). M. K. Lothian-Tomalia, D.M. Hedstrand, D.A. Tomalia, A.B. Padias, H.K. Hall, Jr., Tetrahedron 53, 15495 (1997). L. Balogh, D. R. Swanson, R. Spindler, and D. A. Tomalia, Proceedings fo the Americal Chemical Society, Division of Polymeric Materials Science and Engineering, Volume 77, Sept. 8–11, 1997, Los Vegas, Nevada.Google Scholar