Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T17:18:11.922Z Has data issue: false hasContentIssue false

Realization of an Amorphous N-I-P-I-N Three Color Sensor

Published online by Cambridge University Press:  15 February 2011

K. Eberhardt
Affiliation:
Inst. f. Physikalische Elektronik, Univ. Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
T. Neidlinger
Affiliation:
Inst. f. Physikalische Elektronik, Univ. Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
M. Schubert
Affiliation:
Inst. f. Physikalische Elektronik, Univ. Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

Utilizing the high optical absorption of amorphous silicon in conjunction with advanced signal processing capabilities of modern ASICs offers the possibility of simply realizing smart color sensors with random pixel access and without any losses in active area due to the signal processing circuitry. Thin-film photodiodes have to be incorporated into a layer sequence of ASIC/insulator/metal/a-Si:H based multilayer/TCO for this so-called Thin Film on ASIC (TFA) concept[l]. Amorphous silicon and silicon carbide photodiodes have been studied, and discrimination of the fundamental colors (red, green and blue) has been obtained from 2-terminal n-i-p-i-n devices at small bias voltages within ±2 V. Changing of the bias voltage applied to the two back-to-back p-i-n junctions allows for adjusting the location of predominant photo-carrier collection, and therefore enables color readout according to the energy dependent absorption profile of the incident light. Film thickness and optical bandgap of the individual layers have been optimized to achieve optimum color sensitivity. Switching experiments in the voltage mode give some information about conceivable frame rates these TFA sensors could be operated at. Light-induced degradation does not hamper the performance of the sensors thanks to low light intensity, reverse bias conditions, and small i-layer thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fischer, H., Schulte, J., Rieve, P. and Böhm, M., Mat. Res. Soc. Symp. Proc. 336, 867 (1994)Google Scholar
2. Fang, Y.K., Hwang, S.B., Chen, Y.W. and Kuo, L.C., IEEE Electron Dev. Lett. 12, 172 (1991)Google Scholar
3. Tsai, H.-K. and Lee, S.-C., Appl. Phys. Lett. 52, 275, (1988)Google Scholar
4. de Cesare, G., Di Rosa, P., La Monica, S., Salotti, R., Schirone, L., Saggio, G., Verona, E., J. Non-Cryst. Solids 164–166, 789 (1993)Google Scholar
5. Döhler, G.H., J. Non-Cryst. Solids 77&78, 1041 (1985)Google Scholar
6. Hundhausen, M. and Ley, L., J. Non-Cryst. Solids 77&78, 1051 (1985)Google Scholar
7. Stiebig, H. and Böhm, M., Mat. Res. Soc. Symp. Proc. 297, 963 (1993)Google Scholar
8. de Cesare, G., Irrera, F., Lemmi, F., Palma, F., Tucci, M., Mat. Res. Soc. Symp. Proc. 336, 885 (1994)Google Scholar
9. Eberhardt, K., Lotter, E., Heintze, M., Mohring, H.-D. and Bauer, G.H., MRS Symp. Proc. 258, 673 (1992)Google Scholar
10. Mohring, H.-D., Abel, C.-D., Brüggemann, R. and Bauer, G.H., J. Non-Cryst. Solids 137&138, 847 (1991)Google Scholar
11. Stiebig, H. and Böhm, M., J. Non-Cryst. Solids 164–166, 785 (1993)Google Scholar
12. Street, R.A., J. Non-Cryst. Solids 164–166, 643 (1993)Google Scholar
13. Schmid, G., Schubert, M.B., Brummack, H., Bernhard, N., Proc. 1st World Conf. on Photovoltaic Energy Conversion, Waikoloa, Hawaii, (Dec. 1994), in printGoogle Scholar