Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T21:03:13.089Z Has data issue: false hasContentIssue false

The Reactivity of HCI and Methyltrichlorosilane with Silicon Carbide Surfaces

Published online by Cambridge University Press:  22 February 2011

Mark D. Allendorf
Affiliation:
Sandia National Laboratories, Livermore, CA 94551–0969
Duane A. Outka
Affiliation:
Sandia National Laboratories, Livermore, CA 94551–0969
Get access

Abstract

This work explores the reactivity of HCI and methyltrichlorosilane (MTS) with polycrystalline β-silicon carbide (SiC) surfaces using temperature-programmed desorption (TPD) and Auger electron spectroscopy. HCl is a corrosive gas that inhibits SiC deposition. The results show that HCl is adsorbed by SiC, forming a stable surface chloride that could inhibit SiC deposition. TPD shows that chlorine desorbs as HCI or SiCl4, confirming that HCl can etch SiC surfaces. Desorption is rate-limited by the breaking of Si-Cl bonds. MTS is also adsorbed by SiC; its desorption is similar to that of HCI.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Besmann, T. M.; Johnson, M. L. in Ed. Ceramic Materials and Components for Engines (The American Ceramic Society 1989) p. 443.Google Scholar
(2) Cheng, D. J.; Shyy, W. J.; Kuo, D. H.; Hon, M. H. J. Electrochem. Soc. 1987, 134, 3145.Google Scholar
(3) So, M. G.; Chun, J. S. J. Vac. Sci. Technol. A 1988, 6, 5.Google Scholar
(4) von Muench, W.; Pettenpaul, E. J. Electrochem. Soc. 1978, 125, 294.Google Scholar
(5) Langlais, F.; Prebende, C. in Spear, K., Cullen, G. W., Ed. Eleventh Int'l. Conf. Chemical Vapor Deposition (The Electrochemical Society 1990) p. 686.Google Scholar
(6) Besmann, T. M.; Sheldon, B. W.; Moss, T. S. III; Kaster, M. D., in press, J. Am. Ceram. Soc, 1992.Google Scholar
(7) Allendorf, M. D.; Outka, D. A. Surf. Sci. 1991, 258, 177.Google Scholar
(8) Allendorf, M. D.; Melius, C. F. J. Phys. Chem. 1991, 96, 428.Google Scholar
(9) Allendorf, M. D.; Melius, C. F., accepted for publication in J. Phys. Chem., 1992.Google Scholar
(10) Stinespring, C. D.; Wormhoudt, J. C. J. Appl. Phys. 1989, 65, 1733.Google Scholar
(11) Chan, C; Aris, R.; Weinberg, W. H. Appl. Surf. Sci. 1978, 1, 360.Google Scholar
(12) Benson, S. W. Thermochemical Kinetics; J. Wiley and Sons: New York, 1976.Google Scholar
(13) Pfnür, H.; Feulner, P.; Engelhardt, H. A.; Menzel, D. Chem. Phys. Lett. 1978, 59, 481.Google Scholar
(14) Balooch, M.; Olander, D. R. Surf. Sci. 1992, 261, 321.Google Scholar
(15) Gupta, P.; Coon, P. A.; Koehler, B. G.; George, S. M. Surf. Sci. 1991, 249, 92.Google Scholar
(16) Whitman, L. J.; Joyce, S. A.; Yarmoff, J. A.; Mcfeely, F. R.; Terminello, L. J. Surf. Sci. 1990, 232, 297.Google Scholar
(17) Gates, S. M. Surf. Sci. 1988, 195, 307.Google Scholar
(18) Allendorf, M. D.; Melius, C. F.; Osterheld, T. H.,accepted for publication in Proc. Twelfth Int'l. Conf. Chemical Vapor Deposition, 1993.Google Scholar