Skip to main content Accessibility help

Reactive Ion Etching of CVD Diamond in CF4/O2, O2 and O2/Ar Plasmas

  • Patrick W. Leech (a1), Geoffrey K. Reeves (a2) and Anthony S. Holland (a2)


The reactive ion etching of diamond in O2, CF4/O2, CHF3/O2, O2/Ar) discharges has been examined as a function of bias voltage, flow rate and composition of the gas mixtures. Etching in O2 and O2/Ar plasmas (with flow ratio of O2/Ar >25% ) was characterised by a high etch rate (∼35 nm/min) and an increase in surface roughness with rising bias voltage. The CF4/O2 plasmas also produced a high etch rate (∼50 nm/min) but with only minor dependence of roughness on bias voltage. In comparison, the O2/Ar (with O2/Ar flow ratio <25%) and CHF3/O2 plasmas resulted in a low etch rate (7-10 nm/min). The high and low rate regimes were identified as ion- enhanced chemical etching and physical sputtering respectively. Etching in the O2/Ar plasmas has been attributed to a combination of the two processes dependent on the O2 content.



Hide All
1. Glass, J.T., Fox, B.A., Driefus, D.L., Stoner, B.R., MRS Bulletin, 23, 49 (Sept. 1998).
2. Ashfold, M.N., and May, P.W., “Diamond Chemical Vapour Deposition”, Chemistry and Industry, (London), 13, (7 July 1997), 505.
3. Sandhu, G.B., Chu, W.K., Appl.Phys.Lett., 55(5), 437 (1989).
4. Vescan, A., Ebert, W., Borst, T.H. and Kohn, E., Diamond and Related Materials, 5, 774 (1996).
5. Kuttel, O.M., Diederich, L., Schaller, E., Carnal, O. and Schapbach, L., Surface Science, 337, 812 (1995).
6. Vivensang, C., Ferlazzo-Manin, L., Ravet, M.V., Turban, G., Rosseaux, F. and Gicquel, A., Diamond and Related Materials, 5, 840 (1996).
7. Dorsch, O., Werner, M., Obermeier, E., Harper, R.E., Johnston, C., and Buckley-Golder, I.M., Diamond and Related Materials, 1, 277 (1992).
8. Zhang, W.J., Sun, C., Bello, I., Lee, C.S. and Lee, S.T., J.Vac.Sci.Technol., A17(3), 763 (1999).
9. Grot, S.A., Ditzio, R.A., Gildenblat, G.Sh., Badzian, A.R. and Fonash, S.J., APL, 61(19), 2326 (1992).
10. Kobayashi, K., Mutsukura, N. and Machi, Y., Thin Solid Films, 200, 139 (1991).
11. Whetten, T., Armstead, A., Grzybowiski, T.A. and Ruoff, A.L., JVST, A2(2), 477 (1984).
12. Efremow, N.N., Geiss, M.W., Flanders, D.C., Lincoln, G.A. and Economou, N.P, JVST, B3, 416 (1985).
13. Grogan, D.F., Zhao, T., Bovard, B.G. and Macleod, H.A., Applied Optics, 31(10), 1483 (1992).
14. Malshe, A.P., Park, B.S., Brown, W.D. and Naseem, H.A., Diamond and Related Materials, 8, 1198 (1999),
15. Ohashi, H., Ishiguro, E., Sasano, T. and Shobatake, K., Appl.Phys.Lett., 68(26), 3173 (1996).
16. Steinbruchel, Ch., Lehmann, H.W., and Frick, K., J.Electrochem.Soc., 132, 180 (1985).
17. Steinbruchel, Ch., J.Electrochem.Soc., 130, 648 (1983).
18. Steinbruchel, Ch., Appl. Phys. Lett., 55(19), 1960 (1989).
19. , Williams and , Muller, J.Microelectromechanical Systems, 5(4), 258 (1996).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed