Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-14T19:09:43.941Z Has data issue: false hasContentIssue false

Reaction Pathway Analysis of Homogeneous Dislocation Nucleation in a Perfect Molybdenum Crystal

Published online by Cambridge University Press:  14 March 2011

Hasan A. Saeed
Affiliation:
Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan.
Satoshi Izumi
Affiliation:
Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan.
Shotaro Hara
Affiliation:
Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan.
Shinsuke Sakai
Affiliation:
Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan.
Get access

Abstract

Reaction pathway analysis was carried out for homogeneous dislocation nucleation in perfect crystal Mo. The reaction sampling method employed was based on the Nudged Elastic Band algorithm and other extended schemes. Results obtained were compared with corresponding results for Cu and Si. The stress range for activation energies less than 5 eV is found to be considerably higher for Mo than those for Cu as well as Si. Stresses in excess of 12 GPa make homogeneous dislocation nucleation in Mo an unrealistic transition. The results also show the dislocation cores under this stress range to be diffused, with shear displacement of particles being considerably less than the Burgers vector. Depending on the applied stress, displacement of extra slip-plane atoms can be considerable in Mo. This is in contrast to Cu, in which dislocation nucleation is essentially a two-plane phenomenon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhu, T., Li, J. and Yip, S., Phys. Rev. Lett. 93, 025503 (2004).Google Scholar
2. Shima, K., Izumi, S. and Sakai, S., J. Appl. Phys. 108, 063504 (2010).Google Scholar
3. Zhu, T., Li, J., Samanta, A., Leach, A. and Gall, K., Phys. Rev. Lett. 100, 025502 (2008).Google Scholar
4. Hara, S., Izumi, S., and Sakai, S., J. Appl. Phys. 106, 093507 (2009).Google Scholar
5. Mason, J. K., Lund, A. C., and Schuh, C. A., Phys. Rev. B 73, 054102 (2006).Google Scholar
6. Navarro, V., Rodríguez de la Fuente, O., Mascaraque, A. and Rojo, J. M., Phys. Rev. Lett. 100, 105504 (2008).Google Scholar
7. Li, J., MRS Bull. 32, 151 (2007).Google Scholar
8. Boyer, R. D., Ph.D. thesis, MIT (2007).Google Scholar
9. Saeed, H. A., Izumi, S., Hara, S. and Sakai, S., Mater. Res. Soc. Symp. Proc. FF-05–14, 1224 (2010).Google Scholar
10. Zhou, X. W., Wadley, H. N. G., Johnson, R. A., Larson, D. J., Tabat, N., Cerezo, A., Petford-Long, A. K., Smith, G. D. W., Clifton, P. H., Martens, R. L. and Kelly, T. F., Acta Mater. 49, 4005 (2001).Google Scholar
11. Henkelman, G., Uberuaga, B. P. and Jonsson, H., J. Chem. Phys. 113, 9901 (2000).Google Scholar
12. Zhu, T., Li, J., Samanta, A., Kim, H. G. and Suresh, S., Proc. Natl. Acad. Sci. U.S.A. 104, 3031 (2007).Google Scholar
13. Ogata, S., Li, J., Hirosaki, N., Shibutani, Y. and Yip, S., Phys. Rev. B, 70, 104104 (2004).Google Scholar
14. A Zimmerman, J., Kelchner, C. L., Klein, P. A., Hamilton, J. C. and Foiles, S. M., Phys. Rev. Lett. 87, 165507 (2001).Google Scholar