Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T17:25:28.105Z Has data issue: false hasContentIssue false

Reaction Growth and Morphology of An Aluminide Compound in Al-Cu/Ti-W Bilayers

Published online by Cambridge University Press:  25 February 2011

M. Park
Affiliation:
Chemical, Bio and Materials Engineering Dept., Arizona State University, Tempe AZ 85287
S. J. Krause
Affiliation:
Chemical, Bio and Materials Engineering Dept., Arizona State University, Tempe AZ 85287
S. R. Wilson
Affiliation:
Chemical, Bio and Materials Engineering Dept., Arizona State University, Tempe AZ 85287
Get access

Abstract

The effect of copper content on the reaction growth and morphology of Al12W in Al-Cu/Ti-W bilayers was studied with plan view and cross-section transmission electron microscopy. After heat treatment at 450°C for 30 minutes, a spiked growth of A112W penetrated into the grain boundaries of Al-0.5 wt.% Cu film by the reaction of Al with the Ti-W sublayer. Increasing copper addition from 0.5 to 1.5% inhibited the spiked growth of AI12W, resulting in a flat and planar layer (-150Å) of Al12W. It is suggested that increasing copper segregation in the aluminum grain boundaries during heat treatment at 450°C causes a significant change in the growth morphology of the Al12W compound.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. d'Heurle, R. M., Metal. Trans., 2, 683 (1971).CrossRefGoogle Scholar
2. Hoffman, V., Solid State Technology, June 1983, 119.Google Scholar
3. Wilson, S. R., Mattox, R. J., and Seeger, J., SPIE, 245, 9 (1988).Google Scholar
4. Canali, C., Fantini, F., and Zanoni, E., Thin Solid Films, 22, 325 (1982).Google Scholar
5. Chang, P. H., Liu, H. Y., Keenan, J. A., and Anthony, J. M., J. Appl. Phys., 62, 2485 (1987).Google Scholar
6. Olowolafe, J. O., Palmstrøm, C. J., Colgan, E.G., and Mayer, J.W., J. Appl. Phys., 58, 3440 (1985).Google Scholar
7. Palmstrøm, C. J., Mayer, J. W., Cunningham, B., Campbell, D. R., and Totta, P. A., J. Appl. Phys., 58, 3444 (1985).CrossRefGoogle Scholar
8. Wittmer, M., Legouse, F., and Huang, H. -C. W., J. Electrochem. Soc, 132, 1450 (1985).Google Scholar
9. Wittmer, M., Huang, H. -C. W., and LeGouse, F., Phil. Mag. A, 51, 687 (1986).CrossRefGoogle Scholar
10. Hoang, H. H., IEEE/IRPS, 1988, 173.Google Scholar
11. Colgan, E. G. and Mayer, J. W., J. Mater. Res., 4, 815 (1989).Google Scholar
12. Ball, R. K. and Todd, A. G., Thin solid films, 142, 269 (1987).Google Scholar
13 Howard, K., White, J. F., and Ho, P. S., J. Appl. Phys., 49, 4083 (1978).CrossRefGoogle Scholar
14. Harrison, L. G., Trans. Faraday Soc, 51, 1191 (1961).CrossRefGoogle Scholar
15. Krafcsik, I., Gyular, J., Palmstrøm, C. J., and Mayer, J. W., Appl. Phys. Lett., 42, 1015 (1983).CrossRefGoogle Scholar
16. Park, M., Krause, S. J., and Wilson, S. R. in Structure Property Relationships for Metal/Metal Interface, edited by Romig, A. D. Jr, Fowler, D. E., and Bristowe, P. D. (Mat. Res. Soc. Proc, 222, Pittsburgh PA 1991) pp. 313318.Google Scholar
17. Frear, D. R., Sanchez, J. E., Romig, A. D. Jr, and Morris, J. W. Jr, Metall. Trans., 21A, 2449 (1990).Google Scholar