Skip to main content Accessibility help
×
Home

Rapid Thermal Processing-Based Heteroepitaxy: Material and Device Challenges

  • J. L. Hoyt (a1), P. Kuo (a1), K. Rim (a1), J. J. Welser (a1), R. M. Emerson (a2) and J. F. Gibbons (a1)...

Abstract

Material and device challenges for Rapid Thermal Processing (RTP) of heterostructures are discussed, focusing on RTP-based epitaxy in the Si/Si1−xGex system. While RTP-based heteroepitaxy offers enhanced processing flexibility, it also poses significant challenges for temperature measurement and control. Several examples of Si/Si1−xGex device structures are discussed from the point of view of the sensitivity of device parameters to variations in layer thickness and composition. The measured growth kinetics for Si and Si1−xGex are then used to estimate growth temperature tolerances for these structures. Demanding applications are expected to require temperature control and uniformity to within 0.5°C.

Future research challenges include the fabrication of structures with monolayer thickness control using self-limited growth techniques. Atomic layer epitaxy (ALE) is a well-known example of such a growth technique. In ALE, the wafer is cyclically exposed to different reactants, to achieve layer-by-layer growth. An RTP-based atomic layer epitaxy process, and its application to the growth of CdTe films, is briefly discussed. The extension to Column IV alloys follows readily. The RTP-based process enables self-limited growth for precursor combinations for which isothermal ALE is not feasible.

Copyright

References

Hide All
[1] Gibbons, J.F., Gronet, C.M., and Williams, K.E., Appl. Phys. Lett. 47, 721 (1986).
[2] Reynolds, S., Vook, D.W., and Gibbons, J.F., Appl. Phys. Lett, 49, 1720 (1986).
[3] Green, M.L., Brasen, D., Luftman, H. and Kannan, V.C., J. Appl. Phys. 65, 2558 (1989).
[4] Sturm, J.C., Schwartz, P.V., Prinz, E.J., and Manoharan, H., J. Vac. Sci. Technol. B 9, 2011 (1991).
[5] Burns, G.P. and Wilkes, J.G., Semicond. Sci. Technol. 3, 442 (1988).
[6] Bean, J.C., Sheng, T.T., Feldman, L.C., Fiory, A.T., and Lynch, R.T., Appl. Phys. Lett., 44, 102 (1983).
[7] Drowley, C.I. and Turner, J.E., in Proc. Tenth Intl. Conf. on Chemical Vapor Deposition 1987, edt. by Cullern, G.W. and Blocher, J.M., (Electrochem. Soc. Press, Pennington, NJ, 1987), p. 243.
[8] King, C.A., Hoyt, J.L., Gronet, C.M., Gibbons, J.F., Scott, M.P., and Turner, J., IEEE Elec. Dev. Lett., 10, 52 (1989).
[9] Hoyt, J.L., Noble, D.B., Ghani, T., King, C.A., and Gibbons, J.F., Scott, M.P., Laderman, S.S., Nauka, K., Turner, J.E., Rosner, S.J., and Kamins, T.I., in “Proceedings of the Second International Conference on Electronic Materials”, edt. by Chang, R., Sugano, T., and Nguyen, V. (Mat. Res. Soc., Pittsburgh, Pa, 1991), p. 551.
[10] Houghton, D.C., J. Appl. Phys. 70, 2136 (1991).
[11] Garone, P.M., Sturm, J.C., Schwartz, P.V., Schwarz, S. A., and Wilkens, B.J., Appl. Phys. Lett 56 (1990), 1275 (1990).
[12] Meyerson, B.S., Uram, K.J., and LeGoues, J.K., Appl. Phys. Lett. 53, 2555 (1988).
[13] Harame, D.L., Comfort, J.H., Cressler, J.D., Crabbe, E.F., Sun, J.Y.-C., Meyerson, B.S., and Tice, T., IEEE Trans. Elec. Dev. 42, 455 (1995), and references therein.
[14] Gibbons, J.F., King, C.A., Hoyt, J.L., Noble, D.B., Gronet, C.M., Scott, M.P., Rosner, S.J., Laderman, S.S., Nauka, K., Turner, J. and Kamins, T.I., in IEDM Tech. Dig., 566 (1988).
[15] King, C.A., Hoyt, J.L., and Gibbons, J.F., IEEE Trans. Elec. Dev. 36, 2093 (1989).
[16] Kamins, T., Nauka, K., Kruger, J., Camnitz, L., Scott, M., Turner, J. Rosner, S., Hoyt, J., King, C., Noble, D., and Gibbons, J., in IEDM Tech. Dig., 647 (1989).
[17] Prinz, E.J., Garone, P.M., Schwartz, P.V., Xiao, X., and Sturm, J.C., in IEDM Tech. Dig., 639 (1989).
[18] Walle, C.G. Van de and Martin, R.M., Phys. Rev. B, 34 (8), 5621 (1986).
[19] Raghavan, G., Hughes Research Laboratory, Malibu, CA, private communication.
[20] Welser, J.J., Hoyt, J.L., and Gibbons, J.F., IEDM Tech. Dig., 1000 (1992).
[21] Welser, J.J., Hoyt, J.L., and Gibbons, J.F., IEEE Elec. Dev. Lett., 15 (3), March 1994.
[22] Welser, J.J., Hoyt, J.L., and Gibbons, J.F., IEDM Tech. Dig., 373 (1994).
[23] Garone, P.M., Venkataraman, V., and Sturm, J.C., IEEE Elec. Dev. Lett. 13, 56 (1992).
[24] Verdonckt-Vandebroek, S., Crabbe, E.F., Meyerson, B.S., Harame, D.L., Restle, P.J., Stork, J.M.C., Megdanis, A.C., Stanis, C.L., Bright, A.A., Kroesen, G.M.W., and Warren, A.C., IEEE Elec. Dev. Lett. 12, 447 (1991).
[25] Voinigescu, S.P., Salama, C.A.T., Noel, J.-P., and Kamins, T.I., IEDM Tech. Dig., 369 (1994).
[26] Lassig, S.E., Debolske, T.J. and Crowley, J.L., in Rapid Thermal Processing of Electronic Materials, (Mat. Res. Soc., Pittsburgh, PA, 1987), p. 103.
[27] see for example Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures, (Academic Press, Inc., New York, 1991).
[28] Suntola, T. and Antson, M.J., U.S. Patent No. 4,058,430 (1977).
[29] Atomic Layer Epitaxy, edited by Suntola, T. and Simpson, M. (Blackie, London, England, 1990), and references therein.
[30] Fachinger, W., Sitter, H., and Juza, P., Appl. Phys. Lett. 53, 2519 (1988).
[31] Fachinger, W. and Sitter, H., J. Cryst. Growth 99, 566 (1990).
[32] Wang, W.S., Ehsani, H., and Bhat, I.B., J. Electron. Mater. 22, 873 (1993).
[33] Nishizawa, J., in Compound Semiconductors: Growth, Processing, and Devices, edited by Holloway, P.H. and Anderson, T.H. (CRC Press, Inc., Boca Raton, Florida, 1989).
[34] Emerson, R.M., Ph.D. Thesis, Aug. 1993.
[35] Emerson, R.M., Hoyt, J.L., and Gibbons, J.F., Appl. Phys. Lett. 65, 1103 (1994).
[36] Chu, W.-K., Mayer, J.W., and Nicolet, M.-A., Backscattering Spectrometry, (Academic Press, New York, 1978), pp. 223273.

Rapid Thermal Processing-Based Heteroepitaxy: Material and Device Challenges

  • J. L. Hoyt (a1), P. Kuo (a1), K. Rim (a1), J. J. Welser (a1), R. M. Emerson (a2) and J. F. Gibbons (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed