Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T22:43:26.440Z Has data issue: false hasContentIssue false

Rapid Thermal Nitridation of Tungsten-Capped Shallow Ohmic Contacts to GaAs

Published online by Cambridge University Press:  25 February 2011

E. Kaminska
Affiliation:
Institute of Electron Technology, 02-668 Warsaw, Poland
A. Piotrowska
Affiliation:
Institute of Electron Technology, 02-668 Warsaw, Poland
E. Mizera
Affiliation:
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
M. Guziewicz
Affiliation:
Institute of Electron Technology, 02-668 Warsaw, Poland
A. Barcz
Affiliation:
Institute of Electron Technology, 02-668 Warsaw, Poland
E. Dynowska
Affiliation:
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
S. Kwiatkowski
Affiliation:
Soltan Institute for Nuclear Studies, 00-681 Warsaw, Poland.
Get access

Abstract

We report on the use of AuGeNi/W and AuZn/W metallizations and their further processing by rapid thermal nitridation. Nitrided tungsten serves as a cap suppressing the sublimation of As. To study the effect of annealing conditions on the properties of the W cap, comparative experiments involving conventional annealing in H2, and RTA in N2 or O2 flow, have been performed. TEM, XRD, RBS, and SIMS have been employed to investigate contact microstructures. The obtained results prove the superiority of the contacts with nitrided W cap over conventional insulating cap. No W-N phase is observed in nitrided W layers, which is consistent with the model of a "stuffed" barrier by Nicolet.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Masanori, Murakami, Price, W.H., Greiner, J.H., and Feder, J.D., J.Appl.Phys., 65, 3546 (1989).Google Scholar
2 Lustig, N., Murakami, M., Norcott, M., McGann, K., Appl.Phys.,Lett., 58, 2093 (1991).Google Scholar
3 Kamińska, E., Piotrowska, A., Zarecka, R., Barcz, A., Mizera, E. and Kwiatkowski, S., Acta Physica Polonica A 82, 853 (1992).Google Scholar
4 Nicolet, M.-A., Thin Solid Films, 52, 415 (1978).Google Scholar
5 Kattelus, H.P., Kolawa, E., Affolter, K., and Nicolet, M.-A., J.Vac.Sci.Technol., A 3, 2246 (1985).Google Scholar
6 Kin, Man Yu, Jaklevic, J.M., Haller, E.E., Cheung, S.K., and Kwok, S.P., J.Appl.Phys., 64, 1284 (1988).Google Scholar
7 Paccagnella, A., Callegari, A., Carnera, A., Gasser, M., Latta, E., Murakami, M., and Norcott, N., J.Appl.Phys., 69, 2356 (1991).CrossRefGoogle Scholar
8 Petroff, P., Sheng, T.T., Sinha, A.K., Rozgonyi, G.A., and Alexander, F.B., J.Appl.Phys., 44, 2545 (1973).Google Scholar
9 Josefovicz, J.Y. and Rensch, D.B., J.Vac.Sci.Technol., B 5, 1707 (1987).Google Scholar
10 Youichi, Kuriyama and Shin-Ichi, Ohfuji, J.Appl.Phys., 66, 2446 (1989).Google Scholar
11 Lustig, N. and Schad, R.G., Appl.Phys.Lett., 60, 1984 (1992).Google Scholar
12 Piotrowska, A., Kamińska, E., Guziewicz, M., Piotrowski, T., Kwiatkowski, S., Mat.Res.Soc.Symp.Proc. vol. 342, (1994), to be published.Google Scholar
13 Barcz, A.J., Kaminska, E., Piotrowska, A., Thin Solid Films, 149, 251 (1987).Google Scholar