Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T15:35:27.818Z Has data issue: false hasContentIssue false

(Rapid) Thermal Nitridation of SiO2 films

Published online by Cambridge University Press:  25 February 2011

J.B. Oude Elferink
Affiliation:
Department of Atomic and Interface Physics, University of UtrechtP.O. Box 80.000, 3508 TA Utrecht, The Netherlands
F.H.P.M. Habraken
Affiliation:
Department of Atomic and Interface Physics, University of UtrechtP.O. Box 80.000, 3508 TA Utrecht, The Netherlands
W.F. van der Weg
Affiliation:
Department of Atomic and Interface Physics, University of UtrechtP.O. Box 80.000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

In this paper we report on the composition of thermally nitrided silicon dioxide films on silicon. Nitridation temperatures ranging from 950 to 1150ºC and nitridation times ranging from 10 to 240 s were used. The purpose of this study is to reveal the mechanisms involved in the nitridation process with emphasis on the role of hydrogen. From the temperature dependence of the amount of nitrogen in the films the effective activation energy for nitrogen incorporation in this initial stage was deduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ito, T., Nakumura, T., and Ishikawa, H.. IEEE transactions on Electron devices, 29(1982)498.Google Scholar
[2] Terry, F.L., Aucoin, R.J., Naiman, M.L., and Senturia, S.D.. IEEE electron device letters, 4(1983)191.Google Scholar
[3] Ito, T., Nakumura, T., and Ishikawa, H.. Journal of the Electrochemical Society, 129(1982)184.Google Scholar
[4] Tsai, H.-H., Wu, L.-C., Wu, C.-Y., and Hu, C.. IEEE electron device letters, 8(1987)143.Google Scholar
[5] Pan, P.. Journal of applied physics, 61(1987)264.Google Scholar
[6] Dunselman, C.P.M., Bik, W.M. Arnold, Habraken, F.H.P.M., and Weg, W.F. van der. MRS Bulletin, XII–6(1987)35.Google Scholar
[7] Koba, R. and Tressler, R.E.. Journal of the Electrochemical Society, 135(1988)144.Google Scholar
[8] Habraken, F.H.P.M., Kuiper, A.E.T., Tamminga, Y., and Theeten, J.B.. Journal of applied physics, 53(1982)6996.CrossRefGoogle Scholar
[9] Kuiper, A.E.T., Willemsen, M.F.C., Theunissen, A.M.L., Wijgert, W.M.v.d., Habraken, F.H.M.P., Tijhaar, R.H.G., Weg, W.F.v.d., and Chen, J.T.. Journal of appliedphysics, 59(1986)2765.Google Scholar
[10] Morrow, B.A., Cody, I.A., and Lydia Lee, S.M.. The journal of physical chemistry, 79(1975)2405.Google Scholar
[11] Vasquez, R.P. and Madhukar, A.. Journal of applied physics, 60(1986)234.Google Scholar
[12] Kuiper, A.E.T., Willemsen, M.F.C., Mulder, J.M.L., Elferink, J.B. Oude, Habraken, F.H.P.M., and Weg, W.F. van der. To be published in Journal of Vacuum Science and Technology, june 1989.Google Scholar