Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T20:33:05.399Z Has data issue: false hasContentIssue false

Rapid Annealing of Rie-Induced Damage in GaAs and AlGaAs

Published online by Cambridge University Press:  25 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
U. K. Chakrabarti
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. E. White
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. S. Jones
Affiliation:
University of Florida, Gainesville, FL 32611
Get access

Abstract

Ion bombardment of the surface during CCI2 F2:O2 or C2 H6:H2 :Ar reactive ion etching of GaAs and AlGaAs can produce a heavily disordered near-surface (∼1000A for 380V self-bias on the cathode in a parallel plate reactor) region. The damage in this layer causes carrier depletion effects due to trapping of deep level defects. We have investigated the in-situ and post-RIE annealing of both the structural disorder and the electrical effects of the damage using TEM, ion channelling, C-V and I-V measurements. Etching at 400°C reduced the RIE-induced damage due to dynamic annealing processes. Carrier reductions of approximately an order of magnitude were observed immediately after etching GaAs and AIGaAs in C2H6:H2:Ar; much smaller changes (∼20%) were observed using CCI2F2:O2. For both gas chemistries annealing in the range 200–300°C produced the most ideal I-V characteristics in GaAs, whereas 300–400°C was required for AIGaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hove, J. M. Van, Schuelke, R. J., Thomas, G. P., Jorgenson, J. D., Chang, E. Y., Magarajas, R. M. and Pande, K. P., IEEE Electron Dev. Lett. EDL–9 530 (1988).CrossRefGoogle Scholar
2. Lee, K. Y., Smith, T. P. III, Amot, H., Knoedler, C. M., Hong, J. M., Keen, D. P. and Laux, S. E., J. Vac. Sci. Technol. B6 1856 (1988).CrossRefGoogle Scholar
3. Vatus, J., Chevrier, J., Delesclue, P. and Rochette, J. M., IEEE Trans. Electron Dev. ED–33 934 (1986).CrossRefGoogle Scholar
4. Hu, E. L. and Howard, R. E., Appl. Phys. Lett. 37 1022 (1980).CrossRefGoogle Scholar
5. Semura, S., Saitok, H. and Asakawa, K., J. Appl. Phys. 55 3131 (1984).CrossRefGoogle Scholar
6. Hikosaka, K., Mimura, T. and Joshen, K., Jap. J. Appl. Phys. 20 L847 (1981).CrossRefGoogle Scholar
7. Seabaugh, A., J. Vac. Sci. Technol. B6 77 (1988).CrossRefGoogle Scholar
8. Seaward, K. L., Moll, N. J., Coulman, D. J. and Stickle, W. F., J. Appl. Phys. 61 2358 (1987).CrossRefGoogle Scholar
9. Salimian, S., Copper, C. B. III, Norton, R. and Bacon, J., Appl. Phys. Lett. 51 1083 (1987).CrossRefGoogle Scholar
10. Stem, M. B. and Liao, P. F., J. Vac. Sci. Technol. 1 1053 (1983).Google Scholar
11. Niggebrugge, U., Klug, M. and Garus, G., Inst. Phys. Conf. Ser. 79 367 (1985).Google Scholar
12. Vodjdani, N. and Parrens, P., J. Vac. Sci. Technol. B5 1591 (1987).CrossRefGoogle Scholar
13. Cheung, R., Thomas, S., Beumont, S. P., Doughty, G., Law, V. and Wilkinson, C. D. W., Electronics Letters 23 857 (1987).CrossRefGoogle Scholar
14. Pang, S. W., J. Electrochem. Soc. 133 784 (1986)CrossRefGoogle Scholar
15. Pang, S. W., Lincoln, G. A., McClelland, P. W., DeGraff, P. D., Geiss, M. W. and Piacontini, W. J., J. Vac. Sci. Technol. B1 1334 (1983).CrossRefGoogle Scholar
16. Scherer, A., Craighead, H. G., Roukes, M. L. and Harbison, J. P., J. Vac. Sci. Technol. B6 277 (1988).CrossRefGoogle Scholar
17. Pearton, S. J., Corbett, J. W. and Shi, T. S., Appl. Phys. A 43 153 (1987).CrossRefGoogle Scholar