Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T00:13:29.956Z Has data issue: false hasContentIssue false

Raman Spectroscopy of A Novel Diluted Magnetic Semiconductor: Cubic Cd1−xMnxSe.

Published online by Cambridge University Press:  21 February 2011

R. G. Alonso
Affiliation:
Purdue University, Dept. of Physics, West Lafayette, IN 47907
E.-K. Suh
Affiliation:
Purdue University, Dept. of Physics, West Lafayette, IN 47907
H. Pascher
Affiliation:
Purdue University, Dept. of Physics, West Lafayette, IN 47907
E. Oh
Affiliation:
Purdue University, Dept. of Physics, West Lafayette, IN 47907
A. K. Ramdas
Affiliation:
Purdue University, Dept. of Physics, West Lafayette, IN 47907
N. Samarth
Affiliation:
University of Notre Dame, Dept. of Physics, Notre Dame, IN 46556
H. Luo
Affiliation:
University of Notre Dame, Dept. of Physics, Notre Dame, IN 46556
J. K. Furdyna
Affiliation:
University of Notre Dame, Dept. of Physics, Notre Dame, IN 46556
Get access

Abstract

In contrast to the bulk diluted magnetic semiconductor (DMS) Cd1−xMnxSe which occurs with the wurtzite structure, its epilayers grown on (001) GaAs substrate by Molecular Beam Epitaxy exhibit the cubic zinc-blende structure. Raman spectroscopy and photoluminescence studies on this novel DMS show (1) a “two-mode” behavior of the zone center optical phonons, (2) the Raman line associated with the spin-flip in the Zeeman split S = 5/2 ground state of Mn2+, and (3) large Raman shifts associated with the spin-flip of donor-bound electrons. The large magnetic field dependence in (3) with saturation at high fields and low temperature shows that the s-d exchange interaction characteristic of DMS's is also manifested strikingly in the zinc-blende phase of Cd1−xMnxSe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Furdyna, J. K., J. Appl. Phys. 64, R29 (1988).Google Scholar
2. Bartholomew, D. U., Suh, E.-K., Ramdas, A. K., Rodriguez, S., Debska, U., and Furdyna, J. K., Phys. Rev. B39, 5865 (1989).Google Scholar
3. Kolodziejski, L. A., Gunshor, R. L., Otsuka, N., Gu, B. P., Hefetz, Y., and Nurmikko, A. V., Appl. Phys. Lett. 48, 1482 (1986).Google Scholar
4. Samarth, N., Luo, H., Furdyna, J. K., Qadri, S. B., Lee, Y. R., Ramdas, A. K. and Otsuka, N., Appl. Phys. Lett. 54, 2680 (1989).Google Scholar
5. Samarth, N., Luo, H., Furdyna, J. K., Qadri, S. B., Lee, Y. R., Ramdas, A. K. and Otsuka, N. (unpublished).Google Scholar
6. Alonso, R. G., Suh, E.-K., Ramdas, A. K., Samarth, N., Luo, H., and Furdyna, J. K., Phys. Rev. B40, 3720 (1989).Google Scholar
7. Peterson, D. L., Petrou, A., Giriat, W., Ramdas, A. K., and Rodriguez, S., Phys. Rev. B 33, 1160 (1986).Google Scholar
8. Genzel, L., Martin, T. P., and Perry, C. H., Phys. Stat. Sol. (B) 62, 83 (1974).Google Scholar
9. Suh, E.-K., Arora, A. K., Ramdas, A. K., and Rodriguez, S. (unpublished).Google Scholar
10. Petrou, A., Peterson, D. L., Venugopalan, S., Galazka, R. R., Ramdas, A. K., and Rodriguez, S., Phys. Rev. B27, 3471 (1983).Google Scholar
11. Peterson, D. L., Bartholomew, D. U., Ramdas, A. K., and Rodriguez, S., Phys. Rev. B31, 7932 (1985).Google Scholar
12. Peterson, D. L., Bartholomew, D. U., Debska, U., Ramdas, A. K., and Rodriguez, S., Phys. Rev. B32, 323 (1985).Google Scholar
13. Oh, E., Bartholomew, D. U., Ramdas, A. K., Furdyna, J. K., and Debska, U., Phys. Rev. B38, 13183 (1988).Google Scholar
14. Bartholomew, D. U., Furdyna, J. K., and Ramdas, A. K., Phys. Rev. B34, 6943 (1986).Google Scholar