Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T22:21:24.869Z Has data issue: false hasContentIssue false

Raman and X-Ray Scattering From Dense Semiconductor-Dielectric Nanocomposites

Published online by Cambridge University Press:  25 February 2011

W.H. Yang
Affiliation:
Laser Chemistry, Howard University, Washington, DC 20059 Chinese Academy of Sciences, Beijing, People's Republic of, China
T.E. Huber
Affiliation:
Laser Chemistry, Howard University, Washington, DC 20059 Department of Physics, Polytechnic University, Brooklyn, NY 11201
J.A. Lubin
Affiliation:
Laser Chemistry, Howard University, Washington, DC 20059
G.E. Walrafen
Affiliation:
Laser Chemistry, Howard University, Washington, DC 20059
C.A. Huber
Affiliation:
Naval Surface Warfare Center, Code R36, Silver Spring, MD 20903
Get access

Abstract

Raman scattering measurements have been performed on semiconductor-insulator nanocomposites in which the semiconducting phase occupies a significant (30%) volume fraction. The composites have been synthesized by high pressure injection of the conducting melt into the nanochannels of commercially available insulating matrices. The optical phonon spectra of GaSb- and Te-SiO2 composites exhibit shifts, broadenings, and asymmetries when compared to those of the semiconducting bulk. These are interpreted in terms of strains and phonon confinement in the microcrystalline semiconducting phase. Xray diffraction measurements allow us to correlate the effects of crystallite size and strains on the optical modes of the composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmitt-Rink, S., Miller, D.A.B., and Chemla, D.S., Phys.Rev. B35, 8113, 1987.Google Scholar
2. For a review see Flytzanis, C., Hache, F., Klein, M.C., Ricard, D., and Roussignol, Ph., in Progress in Optics ed. by Wolf, E. (Elsevier, New York, 1991), Vol. XXIX.Google Scholar
3. Fauchet, P.M. and Campbell, I.H., Critical Rev. in Solid State and Materials Science 14, S79 (1988).Google Scholar
4. Fujii, M., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett. 57, 2692 (1990).Google Scholar
5. Scamarcio, G., Lugara, M., and Manno, D., Phys. Rev. B45, 3792 (1992).Google Scholar
6. Zhao, X.S., Schroeder, J., Persans, P.D., and Bilodeau, T.G., Phys. Rev. B43, 12580 (1991).Google Scholar
7. Sandroff, C.J. and Farrow, L.A., Chem. Phys. Lett. 130, 458 (1986).Google Scholar
8. Shiang, J.J., Goldstein, A.N., and Alivisatos, A.P., J. Chem. Phys. 92, 3232 (1990).Google Scholar
9. Kanata, T., Murai, H., and Kubota, K., J. Appl. Phys. 61, 969 (1987).Google Scholar
10. Hayashi, S., Sanda, H., Agata, M., and Yamamoto, K., Phys. Rev. B40, 5544 (1989).Google Scholar
11. Huber, C.A. and Huber, T.E., J. Appl. Phys. 64, 6588 (1988).Google Scholar
12. Huber, T.E., Schmidt, P.W., Lin, J.-S., and Huber, C.A., Mat. Res. Soc. Symp. Proc. EA–25, 207 (1990), and to be published.Google Scholar
13. Klug, H.P. and Alexander, L.A., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, (Wiley, New York, 1954).Google Scholar
14. Alivisatos, A.P., Harris, T.D., Brus, L.E., and Jayaraman, A, J. Chem. Phys. 89, 5979 (1988).Google Scholar
15. Richter, W., Renucci, J.B., and Cardona, M., Phys. Stat. Sol (b) 56, 223 (1973).Google Scholar
16. Nemanich, R.J. and Solin, S.A, Phys. Rev. B20, 392 (1979); H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).Google Scholar
17. Richter, W., in The Physics of Selenium and Tellurium ed. by Gerlach, E. and Grosse, P., Springer Series in Solid State Sciences Vol.13 (Springer, New York, 1979).Google Scholar
18. Pine, A.S. and Dresselhaus, G., Phys. Rev. B4, 356 (1971).Google Scholar
19. Farr, M.K., Taylor, J.G., and Sinha, S.K., Phys. Rev. B11, 1587 (1975).Google Scholar